Abstract:
An MRAM structure is disclosed where the distance from a bit line or word line to an underlying free layer in an MTJ is small and well controlled. As a result, the bit line or word line switching current is reduced and tightly distributed for better device performance. A key feature in the method of forming the MRAM cell structure is a two step planarization of an insulation layer deposited on the MTJ array. A CMP step flattens the insulation layer at a distance about 60 to 200 Angstroms above the cap layer in the MTJ. Then an etch back step thins the insulation layer to a level about 50 to 190 Angstroms below the top of the cap layer. Less than 5 Angstroms of the cap layer is removed. The distance variation from the free layer to an overlying bit line or word line is within +/−5 Angstroms.
Abstract:
A shroud assembly for a disk drive that includes a rotatable disk, a printed circuit board, a data transfer head, an actuator assembly and a flex cable, includes a cable shrouding portion. The shroud assembly also includes a disk shrouding portion and a cable mounting portion. The cable mounting portion includes a first surface and a second surface. The first surface is configured to receive a transition portion of the flex cable proximate to a second end. The second surface is configured to receive the second end of the flex cable and to position the second end for engagement by the printed circuit board. The cable shrouding portion is configured to shield a spanning portion of the flex cable between the cable mounting portion and the actuator assembly from airflow generated by the rotation of the rotatable disk.
Abstract:
The graphics display architecture provided by the present invention comprises an AGP slot, a PCIE slot, and a control chip set. The control chip set comprises a plurality of multi-defined pins, which are electrically coupled to the first pins of the AGP slot and the second pins of the PCIE slot simultaneously. When the first graphics adapter is plugged in the AGP slot and the first graphics adapter complies with AGP interface specification, the multi-defined pins serve to send/receive the signal complied with AGP interface specification. When the first graphics adapter is plugged in the AGP slot and the first graphics adapter complies with the Gfx interface, the multi-defined pins serve to send/receive the signal complied with the Gfx interface. When the second graphics adapter is plugged in the PCIE slot, the multi-defined pins serve to send/receive the signal complied wit the PCIE interface specification.
Abstract:
A disk drive includes a spindle motor assembly mounted on an enclosure and at least two disks. The disks are mounted on a hub of the spindle motor assembly. Each of the disks have a magnetic medium deposited between an inner circumference and an outer circumference. The disks define a volume therebetween wherein airflow is generated when the disks rotate. The disk drive also includes an airflow spoiler positioned between the disks. The airflow spoiler has a spoiler mounting portion and a non-data bearing extending portion. The spoiler mounting portion is configured to be mounted on the hub of the spindle motor assembly. The non-data bearing extending portion is connected to the spoiler mounting portion and extends outwardly therefrom into the volume defined between the disks. The non-data bearing extending portion extends at least partially over the magnetic medium.
Abstract:
Described is an one bit matched filter for generating a sequences of correlations between a signal bit stream and a sample stream of n sample bits. The n sample bits are arranged in a rang of n bit positions n, n-1, . . . , 2, 1. Among the n sample bits, m boundary positions are defined based on the bit pattern of the sample stream, where m
Abstract:
A novel class of information-processing systems called a cellular neural network is discussed. Like a neural network, it is a large-scale nonlinear analog circuit which processes signals in real time. Like cellular automata, it is made of a massive aggregate of regularly spaced circuit clones, called cells, which communicate with each other directly only through its nearest neighbors. Each cell is made of a linear capacitor, a nonlinear voltage-controlled current source, and a few resistive linear circuit elements. Cellular neural networks share the best features of both worlds; its continuous time feature allows real-time signal processing found within the digital domain and its local interconnection feature makes it tailor made for VLSI implementation. Cellular neural networks are uniquely suited for high-speed parallel signal processing.
Abstract:
The disclosure provides a method and device used in wireless communication node. A first node receives K candidate radio signal(s), and receives a first radio signal, the first radio signal being associated to a first identifier; the K candidate radio signal(s) is(are) associated to K first-type identifier(s) respectively, and only K1 first-type identifier(s) among the K first-type identifier(s) is(are) equal to the first identifier; the K1 first-type identifier(s) is(are) associated to K1 candidate radio signal(s) among the K candidate radio signal(s) respectively; only the K1 candidate radio signal(s) among the K candidate radio signal(s) can be used for controlling a receiving power of the first radio signal; the K is a positive integer. The disclosure simplifies the AGC process on terminal side through designing K first-type identifiers, which is suitable for application scenarios with multiple subcarrier spacings on sidelink, thereby improving the overall performance of the system.
Abstract:
The disclosure discloses a method and device in a communication node for wireless communication. The communication node receives first information, and performs Q energy detections respectively in Q time sub-pools within a first sub-band, and if energy detected by each energy detection of the Q energy detections is lower than a first threshold, starts to transmit a first radio signal at a first time-instant; the first information is used to determine K candidate time-instant subsets; a target time-instant subset is one of the K candidate time-instant subsets, the first time-instant belongs to the target time-instant subset; a frequency-domain bandwidth of the first sub-band is used to determine the target time-instant subset out of the K candidate time-instant subsets, and frequency-domain resources occupied by the first radio signal belong to the first sub-band. The disclosure can improve access fairness.
Abstract:
The present disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. The UE receives first information, the first information is used to indicate K sub-band(s); the UE performs first access detection, or performs second access detection; transmits or drops transmitting a first radio signal in the first sub-band. If the first sub-band is one of K sub-band(s) and time domain resources occupied by the first radio signal belong to a first time window, the first access detection is performed, the first access detection is used to determine whether the first radio signal is transmitted in the first sub-band; the second access detection is used to determine whether the first radio signal is transmitted in the first sub-band; the detection time of the first access detection is less than that of the second access detection.
Abstract:
The disclosure provides a method and a device for positioning in wireless communication. A first node transmits Q1 first-type radio signal(s) and transmits first information; wherein the Q1 first-type radio signal(s) is(are) transmitted by Q1 spatial parameter group(s) respectively; the first information includes a first Identifier (ID) and Q1 piece(s) of channel information, and the first information is used for indicating Q1 geographic position(s); the Q1 piece(s) of channel information is(are) based on a channel measurement(s) performed by a target node for the Q1 spatial parameter group(s) respectively, and the target node is identified by the first ID; and the Q1 spatial parameter group(s) cover(s) the Q1 geographic position(s) respectively. The disclosure can improve the precision of positioning and meanwhile keep a good compatibility with existing systems.