Abstract:
This disclosure provides apparatus, systems, and methods for updating display devices. In one aspect, a display can switch between a plurality of display modes based at least in part on a spatial distribution of changed image regions over a number of frames of an image to be displayed.
Abstract:
A system for restricting spinal flexion includes superior and inferior tether structures joined by a pair of compliance members. Compliance members comprise tension members which apply a relatively low elastic tension on the tether structures. By placing the tether structures on or over adjacent spinous processes, flexion of a spinal segment can be controlled in order to reduce pain.
Abstract:
This disclosure provides systems, methods and apparatus for manufacturing display devices having electronic components mounted within a display device package. In one aspect, the electronic component connects to the exterior of the display device through pads that run below a seal that holds a substrate and a backplate of the display device together. In another aspect the electronic components also connect to an electromechanical device within the display device, as well as connecting to pads that are external to the display device.
Abstract:
A system and method for an optical component that masks non-active portions of a display and provides an electrical path for one or more display circuits. In one embodiment an optical device includes a substrate, a plurality of optical elements on the substrate, each optical element having an optical characteristic which changes in response to a voltage applied to the optical element, and a light-absorbing, electrically-conductive optical mask disposed on the substrate and offset from the plurality of optical elements, the optical mask electrically coupled to one or more of the optical elements to provide electrical paths for applying voltages to the optical elements. In another embodiment, a method of providing an electrical signal to optical elements of a display comprises electrically coupling an electrically-conductive light-absorbing mask to one or more optical elements, and applying a voltage to the mask to activate the one or more optical elements.
Abstract:
In order to provide a temporary lighting solution in extreme weather or lighting conditions, this application has been conceived. A set of blowers will continuously operate to inflate a long cylindrical tube in which a light has been placed to illuminate a designated area. Because the unit may be used outdoors a stabilizing rod has been placed in the event of a sudden loss of power to prevent the tube from deflating rapidly and descending rapidly to the ground level and causing possible injury to persons on the ground or the light itself. Because this device may be used in extremely windy conditions, a plurality of outriggers will attach to the frame and extend outward to stabilize the device, when needed. Because the blowers will operate continuously and thereby produce noise a plurality of noise abatement containers are placed around the blowers to help lessen the noise level.
Abstract:
In certain embodiments, a device is provided including a substrate and a plurality of supports over the substrate. The device may further include a mechanical layer having a movable portion and a stationary portion. The stationary portion may disposed over the supports. In certain embodiments, the device further includes a reflective surface positioned over the substrate and mechanically coupled to the movable portion. The device of certain embodiments further includes at least one movable stop element displaced from and mechanically coupled to the movable portion. In certain embodiments, the at least a portion of the stop element may be positioned over the stationary portion.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
Methods and systems for providing a light device that can emit light and sense light are disclosed. In one embodiment, a lighting device includes a light guide having a planar first surface, the light guide configured such that at least some ambient light enters the light guide through the first surface and propagates therein, and at least one light detector disposed along an edge of the light guide, the at least one detector optically coupled to the light guide to receive light propagating therein. The light detector can be configured to produce a control signal. In some embodiments, the lighting device also includes at least one light turning feature disposed on the first surface, the at least one light turning feature configured to direct light incident into the light guide through the first surface.
Abstract:
An optical accelerometer and method of determining an acceleration are disclosed. In one aspect, an accelerometer includes a light source, a substrate, a light guide attached to a first side of the substrate and configured to redirect light from the light source through the substrate. The accelerometer also includes a light detector, a proof mass attached to a second side of the substrate via one or more springs, wherein the second side is opposite the first side and wherein motion of the proof mass alters a characteristic of the light from the light source reaching the light detector, and a processor configured to determine an acceleration based on the characteristic of the light reaching the light detector.
Abstract:
A display with patterned photovoltaic (PV) material integrated on the front side and/or back side of the display is disclosed. Light may reach PV material situated behind a display through fully or partially transmissive features or gaps within the display. Display-generated light may also reach PV material behind a display. A patterned PV material situated in front of a display may collect both ambient light as well as display-generated light.