Abstract:
A sorbent pouch for use in sorbent dialysis. The sorbent pouch allows for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouch.
Abstract:
Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include passing solutions containing combinations of acids, bases and salts through a module containing a rechargeable sorbent material such as zirconium phosphate in order to replace ions bound to the zirconium phosphate with hydrogen and sodium ions. The method allows for a customizable zirconium phosphate, with control over the ratios of sodium to hydrogen on the recharged zirconium phosphate.
Abstract:
The invention relates to devices, systems, and methods for generating a peritoneal dialysate having specified concentrations of one or more solutes. The devices, systems and methods use conductivity sensors, flow meters, and composition sensors to control addition of osmotic agents and ion concentrates into a peritoneal dialysate generation flow path.
Abstract:
The invention relates to devices, systems, and methods for temperature regulation in generating peritoneal dialysate and using a peritoneal dialysis (PD) system. The system can use a heater and temperature sensors to regulate the temperature of fluid within the PD system.
Abstract:
Systems and methods of generating peritoneal dialysate and using the peritoneal dialysate with an integrated cycler are provided. The systems and methods use a water purification module, a sterilization module and concentrates to prepare peritoneal dialysate from source water and infuse the prepared peritoneal dialysate into a patient with an integrated cycler. Optional dialysate storage containers are provided for storage of the peritoneal dialysate prior to use.
Abstract:
An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis. The sorbent cartridge is configured to allow an amount of urease to be added to the sorbent cartridge. A urease solution can be injected into the sorbent cartridge to replenish the urease containing module, or solid urease can be added to the sorbent cartridge. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
Abstract:
A stacked sorbent assembly for use in sorbent dialysis. The stacked sorbent assembly contains two or more interchangeable sorbent pouches that allow for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouches. Any of the pouches in the sorbent cartridge can be reused and/or recharged.
Abstract:
The invention relates to devices, systems, and methods for precision recharging of sorbent materials in a sorbent module. The devices, systems, and methods use manufacturing characteristics of the sorbent module to set recharge parameters used in recharging the sorbent material.
Abstract:
The invention relates to systems and methods for generation and use of peritoneal dialysis fluid. The peritoneal dialysis fluid is generated by dissolving solids or diluting concentrated liquids in a single container having all components of the final peritoneal dialysis fluid.
Abstract:
The invention relates to an infusate holder for use in dialysis. The infusate holder can include one or more interior compartments for holding infusate containers or infusates. The interior compartments are aligned to cooperate with fluid connectors of a dialysis system, ensuring that the proper infusates are added to the dialysis system at a proper location.