Abstract:
The invention can provide a method of processing a wafer using a Real-Time Parameter Tuning (RTPT) procedure to receive an input message that can include a pass-through message, a real-time feedforward message, or a real-time optimization message, or any combination thereof. The RTPT procedures can use real-time wafer temperature data to create, modify, and/or use measurement recipe data, measurement profile data, and/or measurement model data. In addition, RTPT procedures can use real-time wafer temperature data to create, modify, and/or use process recipe data, process profile data, and/or process model data.
Abstract:
This method includes a method for etch processing that allows the bias between isolated and nested structures/features to be adjusted, correcting for a process wherein the isolated structures/features need to be smaller than the nested structures/features and wherein the nested structures/features need to be reduced relative to the isolated structures/features, while allowing for the critical control of trimming.
Abstract:
A system, method and program product for correcting a deviation of a dimension of a feature from a target in a semiconductor process, are disclosed. The invention determines an origin of a deviation in a feature dimension from a target dimension regardless of whether it is based on processing or metrology. Adjustments for wafer processing variation of previous process tools can be fed forward, and adjustments for the process and/or integrated metrology tools may be fed back automatically during the processing of semiconductor wafers. The invention implements process reference wafers to determine the origin in one mode, and measurement reference wafers to determine the origin of deviations in another mode.
Abstract:
To determine the profile of an integrated circuit structure, a signal is measured off the structure with a metrology device. The measured signal is compared to signals in a virtual profile library. The comparison is stopped if matching criteria are met. A subset of a virtual profile data space is determined when the matching criteria are not met. The subset is determined using profile data space associated with the library. A virtual profile signal of the subset is selected. Virtual profile shape/parameters are determined based on the virtual profile signal. A difference is calculated between the measured and virtual profile signals. The difference is compared to virtual profile library creation criteria. If the criteria are met, then the structure is identified using virtual profile data, which includes the virtual profile shape/parameters, associated with the virtual profile signal. Or, if the criteria are not met, then a corrective action is applied.
Abstract:
A method of refining a virtual profile library includes obtaining a reference signal measured off a reference structure on a semiconductor wafer with a metrology device. A best match is selected of the reference signal in a virtual profile data space. The virtual profile data space has data points with specified accuracy values. The data points represent virtual profile parameters and associated virtual profile signals. The virtual profile parameters characterize the profile of an integrated circuit structure. The best match being a data point of the profile data space with a signal closest to the reference signal. Refined virtual profile parameters are determined corresponding to the reference signal based on the virtual profile parameters of the selected virtual profile signal using a refinement procedure.
Abstract:
A method of measuring a damaged structure formed on a semiconductor wafer using optical metrology includes directing an incident beam on the damaged structure. A diffracted beam is received from the damaged structure. The received diffracted beam is processed to determine a profile of an undamaged portion of the damaged structure and to measure an amount of dielectric damage of the damaged structure.
Abstract:
A method of using a run-to-run (R2R) controller to provide wafer-to-wafer (W2W) control in a semiconductor processing system is provided. The R2R controller includes a feed-forward (FF) controller, a process model controller, a feedback (FB) controller, and a process controller. The R2R controller uses feed-forward data, modeling data, feedback data, and process data to update a process recipe on a wafer-to-wafer time frame.
Abstract:
A method for implementing FDC in an APC system including receiving an FDC model from memory; providing the FDC model to a process model calculation engine; computing a vector of predicted dependent process parameters using the process model calculation engine; receiving a process recipe comprising a set of recipe parameters, providing the process recipe to a process module; executing the process recipe to produce a vector of measured dependent process parameters; calculating a difference between the vector of predicted dependent process parameters and the vector of measured dependent process parameters; comparing the difference to a threshold value; and declaring a fault condition when the difference is greater than the threshold value.
Abstract:
The invention relates to controlling a semiconductor processing system. Among other things, the invention relates to a run-to-run controller to create virtual modules to control a multi-pass process performed by a multi-chamber tool during the processing of a semiconductor wafer.
Abstract:
A processing system is disclosed, having an electron beam source chamber that excites plasma to generate an electron beam, and an ion beam source chamber that houses a substrate and also excites plasma to generate an ion beam. The processing system also includes a dielectric injector coupling the electron beam source chamber to the ion beam source chamber that simultaneously injects the electron beam and the ion beam and propels the electron beam and the ion beam in opposite directions. The voltage potential gradient between the electron beam source chamber and the ion beam source chamber generates an energy field that is sufficient to maintain the electron beam and ion beam as a plasma treats the substrate so that radio frequency (RF) power initially applied to the processing system to generate the electron beam can be terminated thus improving the power efficiency of the processing system.