摘要:
A multi-dimensional recording (MDR) system may include a group based coding circuit (GBCC) which can implement error correcting codes via outer codes. The GBCC can implement outer codes, including interleaving outer codes, in MDR systems where inner codewords include multiple memory groupings. The multiple memory groupings may be across different structural divisions within a data storage medium; or could be across multiple different data storage mediums.
摘要:
Presented is a data channel with selectable components, such as encoders or decoders. Also, data having different data signal characteristics can be processed through a data channel based on the data signal characteristics. Further, a data channel may have independent encoding path and an independent decoding path. For example, a first data transmission having first data signal characteristics may be processed via a data channel based on a first selected set of components of the data channel and a second data transmission having second data signal characteristics different than the first data signal characteristics may be processed via the data channel using a second selected set of components in the data channel. The first selected set of components may be different than the second selected set of components, but may share one or more common components.
摘要:
Symmetrical or asymmetrical noise distributions for voltages corresponding to symbols that can be stored in multi-level memory cells (MLCs) of a memory device are used to determine read reference and/or programming voltages. The read reference voltages and/or programming voltages for the MLCs are jointly determined using the symmetrical distributions and a maximum likelihood estimation (MLE) and/or by determining at least one of the read reference voltages and the programming voltages using the asymmetrical distributions.
摘要:
Cells of a solid-state, non-volatile memory are assigned to one of a plurality of groups. Each group is defined by expected symbols stored in the cells in view of actual symbols read from the cells. Based on cell counts within the groups, it can be determined that a shift in a reference voltage will reduce a collective bit error rate of the cells. The shift can be applied to data access operations affecting the cells.
摘要:
Outer code words can span multiple data blocks, multiple die, or multiple chips of a memory device to protect against errors in the data stored in the blocks, die and/or chips. A solid state memory device is arranged in multiple data blocks, each block including an array of memory cells arranged in a plurality of pages. The data is encoded into inner code words and symbol-based outer code words. The inner code words and the symbol-based outer code words are stored in the memory cells of the multiple blocks. One or more inner code words are stored in each page of each block and one or more symbols of each outer code word are stored in at least one page of each block. The inner code words and the outer code words are read from the memory device and are used to correct the errors in the data.
摘要:
Bit errors affecting cells of a solid-state, non-volatile memory are assigned to at least a first or a second category based on a relative amount of voltage shift that caused the respective bit errors in the respective cells. A reference voltage used to access the respective cells is adjusted to manage the respective bit errors of the first category. Additional corrective measures are taken to manage the respective bit errors of the second category.
摘要:
In a particular embodiment, a channel detector is disclosed that includes a programmable look-up table (LUT) to relate user bits to channel bits. The programmable LUT is adapted to be implemented on a state trellis of arbitrary radix. The channel detector further includes a sectional precoder coupled to a channel and having access to the programmable LUT. The sectional precoder is adapted to map channel bits to user bits and vice versa using a programmable LUT.
摘要:
A storage medium includes at least one data unit defining a plurality of symbol-based inner code words and a plurality of symbol-based outer code words. Each symbol included in one of the inner code words is also included in one of the outer code words. A processor is configured to perform a first iteration of inner code error correction on the plurality of symbol-based inner code words, a first iteration of outer code error correction on the plurality of symbol-based outer code words and a second iteration of inner code error correction on the plurality of symbol-based inner code words. In the first iteration of outer code error corrections, at least one of the outer code words is correctable. In the second iteration of inner code error correction, at least one of the inner code words is correctable.
摘要:
A nominal reference read operation compares analog voltages of the memory cells to at least one nominal reference voltage. A shifted reference read operation compares the analog voltages of the memory cells to at least one shifted reference voltage that is shifted from the nominal reference voltage to compensate for an expected change in the analog voltages of the memory cells. Data stored in the memory cells is decoded by a first decoding process that uses the information from either the nominal reference read operation or the shifted reference read operation. The data stored in the memory cells is decoded by a second decoding process that uses the information from both the nominal reference read operation and the shifted reference read operation.
摘要:
A method and apparatus for processing symbols of a block code is presented. A sequence of symbols is received, e.g., from an inter-symbol interference (ISI) channel. A soft value is determined for each symbol using a binary trellis.