摘要:
The present invention is a system for laser micromachining where a scan mirror and milling algorithm are used to produce high precision, controlled hole shapes in a workpiece. A picosecond laser that produces short pulses is used to reduce thermal effects to improve the quality and repeatability of the milled holes, and a Diffractive Optical Element (DOE) is used to split a single beam into a plurality of beams to allow parallel drilling of the workpiece. A method for operating a laser drilling system where high precision, controlled hole shapes in a workpiece are drilled includes using a scan mirror and milling algorithm, and using a picosecond laser in conjunction with a DOE, thus ensuring that spectral bandwidth issues and thermal issues are addressed to improve the quality and repeatability of the holes.
摘要:
A method for focusing an ultrashort pulse laser relative to a workpiece using the position of a plasma formed by a laser. A laser beam is focused to a focal point. The high peak intensity of the ultrashort pulse laser ionizes air at the focal region to form a plasma. The intensity of the plasma varies as its position relative to the workpiece varies. The intensity of the plasma formed by the focused laser beam is detected. The position of the focal point relative to the workpiece is adjusted responsive to the detected intensity of the plasma.
摘要:
In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (F.sub.th) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused to a point at or beneath the surface of a material where laser induced breakdown is desired.The beam may be used in combination with a mask in the beam path. The beam or mask may be moved in the x, y, and Z directions to produce desired features. The technique can produce features smaller than the spot size and Rayleigh range due to enhanced damage threshold accuracy in the short pulse regime.
摘要:
A light diffuser panel for coupling to an optical element, includes a plurality of first type layers of a first type of material with a refractive index n1, and a plurality of second type layers of a second type of material with a different refractive index n2, wherein each of the first type layers and each of the second type layers are arranged to form a plurality of interface surfaces between alternating first type layers and second type layers, tilted at a plurality of angles with tilt axes that are parallel to a plane of the light diffuser panel, such that visible light from the optical element is transmitted through the light diffuser panel and the interface surfaces, and a portion of the visible light from the optical element is reflected out of the light diffuser panel at each of the interface surfaces.
摘要:
Apparatus and methods for drilling holes in a material with a laser are disclosed. An apparatus for drilling holes in a material with a laser includes a first steering element, a second steering element, and a lens. The first steering element is positioned to steer a beam from the laser. The second steering element is positioned to steer the beam from the first steering element. The lens focuses the beam from the second steering element. The first and second steering elements are configured to move with respect to the beam. Moving the first and second steering elements changes an angle of the beam where it contacts the material. The apparatus is operable to drill holes having no taper or reverse taper.
摘要:
The present invention is a method of selecting composite sheet materials for use in ultra-fast laser patterning of layers of organic thin film material such as OLEDs. The material is selected to accomplish patterning of upper layers without damaging underlying layers by using an ultra-fast laser programmed with the appropriate laser processing parameters. These parameters are derived by examining each layer's absorption spectra, thermal, and chemical characteristics. The method of the present invention includes measuring each layer's absorption spectrum, examining each layer's thermal and chemical characteristics, determining if the layer is ablatable, determining the laser setup, patterning the layer through laser ablation processing, and determining if more layers need to be ablated. Further, the method includes a sub-method of selecting an alternate material if a layer's material characteristics are not favorable for ablation without damaging underlying layers.
摘要:
A laser rod and methods of manufacturing a plurality of laser rods such that each laser rod has two polished end surfaces and an optical axis that extends between the two polished end surfaces. The laser rod includes a gain material component that has a substantially prismatic shape. The gain material component includes: a first end surface that is substantially optically smooth; a second end surface that is substantially optically smooth; at least three flat side surfaces; and an optical axis, which is substantially parallel to the flat side surfaces. The optical axis intersects the first end surface at a first incidence angle and it intersects the second end surface at a second incidence angle.
摘要:
A structured diamond tool having a predefined grayscale grating profile shape allows a corresponding grayscale grating profile to be machined into a work piece with a single pass with high accuracy. Manufacture of grayscale gratings using this technique saves time compared to the situation where the profile is machined by a single-point diamond tool with multiple passes. Also, more time-saving is realized if more than one period is machined in the diamond tool. Such a tool can be manufactured using a high precision focused ion beam (FIB), which is a true nanomachining tool that can machine features on the order of tens of nanometers. The diamond tool made by FIB therefore has extremely fine resolution and features required by the grayscale grating.
摘要:
A precision machining system with a variable projected machining width of the cutting surface of the machining tool, including: a workpiece holder to hold a workpiece; a machining tool holder to hold the machining tool such that the Z axis is substantially parallel to the tool's centerline; a Z translation stage and an X translation stage each coupled to one of the workpiece holder or the machining tool holder; a workpiece spindle coupled to the workpiece holder to rotate the workpiece about the workpiece axis that is parallel to the Z axis; a machining path controller electrically coupled to the X translation stage and the workpiece spindle; and a tool spindle coupled to the machining tool holder. The tool spindle rotates the machining tool about the centerline of the machining tool, which varies the width of the cutting surface of the machining tool projected perpendicular to the machining path.
摘要:
A method of etching a feature in a surface of a substrate. The substrate is provided. A photoresist layer is formed on the surface of the substrate. A thickness profile of the formed photoresist layer is determined. A grayscale scanning pattern is determined based on the feature and the thickness profile of the photoresist layer. The determined grayscale scanning pattern is laser written on the photoresist layer to expose a portion of the photoresist layer. The exposed portion of the photoresist layer is removed to form a grayscale pattern in the photoresist layer. The photoresist layer and the surface of the substrate are etched to form the feature in the surface of the substrate.