Abstract:
A radio receiver apparatus that can effectively utilize GI to improve the reception quality. In this apparatus, a data extracting part extracts a data portion of a direct wave from a signal subjected to a radio reception process by a received RF part. A GI extracting part extracts, from the signal subjected to the radio reception process by the received RF part, GI having a length determined by an extracted GI length deciding part. The extracted GI is adjusted by a data position adjusting part such that its rear end coincides with the read end of the extracted data portion. A combining part combines the extracted data portion with the GI the data position of which has been adjusted. The combined signal is then supplied to a frequency axis equalizing part, which equalizes the signal distortions of the combined signal on the frequency axis.
Abstract:
The present invention relates to a terminal and a base station, and to a receiving and transmitting method to be performed at the terminal and the base station, respectively. In particular, the present invention relates to power consumption reduction by providing two operation bandwidths for a terminal, one being a cell-bandwidth, a bandwidth in which the cell may operate and the other one is a bandwidth, lower than the cell-bandwidth and called power-saving bandwidth. The terminal may perform the initial cell search including reception of the system information in the cell bandwidth and perform other reception/transmission/monitoring operation(s) in the power-saving bandwidth. Accordingly, a low-cost terminal implementation is enabled, which is particularly advantageous for the machine communication terminals.
Abstract:
A wireless communication apparatus and a wireless communication method wherein even when the permissible delay amount of data is small, the permissible delay thereof can be satisfied. A data type determining part determines whether the delay of transport data or control information should be allowed or not. A pilot signal insertion control part decides, based on pilot insertion interval information and allowable delay information, that a pilot signal is placed adjacently to data that is not allowed to delay. A multiplexing part multiplexes encoded and modulated transport data with the pilot signal generated by a pilot signal generating part in such a manner that realizes the placement decided by the pilot signal insertion control part.
Abstract:
A wireless communication base station apparatus that allows the number of times of blind decodings at a mobile station to be reduced without increasing the overhead caused by notifying information. In this apparatus, a CCE allocation part (104) allocates allocation information allocated to a PDCCH received from modulation parts (103-1 to 103-K) to a particular one of a plurality of search spaces that is corresponding to a CCE aggregation size of the PDCCH. A placement part (108) then places the allocation information in one of downstream line resources, reserved for the PDCCH, that is corresponding to the CCE of the particular search space to which the allocation information has been allocated. A radio transmission part (111) then transmits an OFDM symbol, in which the allocation information has been placed, to the mobile station from an antenna (112).
Abstract:
A terminal device is equipped with: a sequence determination unit that determines a sequence number with a different pattern than the assignment pattern for the sequence number assigned to the cell in which the host device resides; a reference signal generation unit that generates a reference signal for a sequence group corresponding to the sequence number that has been determined; and a wireless transmission unit that transmits the reference signal that has been generated to a base station. The sequence determination unit employs a configuration whereby, with the sequence number assigned to the cell in which the host device resides as a cell-specific sequence number, a dynamic offset which periodically changes over time and for which the same value is not consecutive is added to the cell-specific sequence number, thereby determining a sequence number which never overlaps with the cell-specific sequence number.
Abstract:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
Abstract:
The invention relates to a method, apparatus and system for configuring control channels in a mobile communication network and a mobile station. In order to suggest another improved scheme for configuring control channels, in particular control channels related to the transmission of user data the invention suggests aligning the size of the control channel information of different formats to an equal number of coded control channel information bits and/or modulation symbols for each control channel. The control channels may comprise scheduling related control information. According to another aspect of the invention, the size of the control channel information is aligned by means of modulation and/or coding, however the control channel information is aligned to one out of a set of numbers of coded control channel information bits and/or modulation symbols for each control channel.
Abstract:
A radio communication apparatus receives control information on one or more control channel elements (CCEs) with consecutive CCE number(s). The radio communication apparatus first-spreads a response signal with a sequence defined by a cyclic shift value that is determined among a plurality of cyclic shift values from an index of physical uplink control channel (PUCCH), which is associated with a first CCE number of the one or more CCEs, and second-spreads the first-spread response signal with an orthogonal sequence that is determined among a plurality of orthogonal sequences from the index. One of cyclic shift values used for an orthogonal sequence is determined from an index of thePUCCH, which is associated with an odd CCE number, and another one of the cyclic shift values used for the same orthogonal sequence is determined from an index of the PUCCH, which is associated with an even CCE number.
Abstract:
A radio communication mobile station device reduces the number of blind decoding processes at a mobile station without increasing overhead by report information. The device includes a judgment unit which judges a particular PUCCH to which a response signal corresponding to the downstream line data is to be allocated among a plurality of PUCCH, according to a CCE occupied by PDCCH allocated to a particular search space corresponding to a CCE aggregation size or the PDCCH to which allocation information destined to the local station is allocated among search spaces changing in accordance with the CFI value; and a control unit which controls a cyclic shift amount of a ZAC sequence of the response signal and a block-wise spread code sequence according to a correspondence between CCE occupied by PDCCH allocated to a particular search space and a particular PUCCH resource, the correspondence changing in accordance with the CFI value.
Abstract:
Provided is a base station capable of suppressing increase of overhead of allocation result report in frequency scheduling in multi-carrier communication and obtaining a sufficient frequency diversity effect. In the base station, encoding units (101-1 to 101-n) encode data (#1 to #n) to mobile stations (#1 to #n), modulation units (102-1 to 102-n) modulate the encoded data so as to generate a data symbol, a scheduler (103) performs frequency scheduling according to a CQI from each mobile station so as to uniformly allocate data to the respective mobile stations for a part of RB extracted from a plurality of RB, and an SCCH generation unit (105) generates control information (SCCH information) to report the allocation result in the scheduler (103) to the respective mobile stations.