Abstract:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
Abstract:
A wireless communication base station device, terminal device, and method have reduced signaling while maintaining high scheduling gain. A judgment unit pre-stores a correspondence between the number of code words and the number of clusters to reduce the maximum value for the number of clusters allocated to each terminal as the number of code words increases, and thus determines the maximum value for the number of clusters based on the number of code words acquired. Based on the number of code words for a transmission signal from a terminal, an estimated value for the reception quality, and the maximum value for the number of clusters that is output by the judgment unit, a scheduling unit schedules the allocation of the transmission signal transmitted by each terminal to a transmission band frequency (frequency resource) so as not to exceed the maximum value for the number of clusters.
Abstract:
A wireless communication apparatus and a wireless communication method wherein even when the permissible delay amount of data is small, the permissible delay thereof can be satisfied. A data type determining part determines whether the delay of transport data or control information should be allowed or not. A pilot signal insertion control part decides, based on pilot insertion interval information and allowable delay information, that a pilot signal is placed adjacently to data that is not allowed to delay. A multiplexing part multiplexes encoded and modulated transport data with the pilot signal generated by a pilot signal generating part in such a manner that realizes the placement decided by the pilot signal insertion control part.
Abstract:
Provided is a cyclic shift sequence generation method which can prevent coming of an interference wave into a desired wave detection window even if a cyclic shift sequence has a high mutual correlation in different bandwidths, thereby improving a channel estimation accuracy in a base station. In this method, a cyclic shift sequence number to be allocated to a cell is decided in advance. Moreover, when the cyclic shift amount between cyclic shift sequences allocated in cells is Δ1 and the cyclic shift amount of the cyclic shift sequences allocated between the cells is Δ2, Δ1 and Δ2 are made different when generating a cyclic shift sequence.
Abstract:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). R control ′ = O Q ′ = max ( O ⌈ O 10 - Δ offset PUSCH + Δ offset RANK 10 · R data ⌉ , O 4 · M sc ) ( 1 ) Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.
Abstract:
A CCE+ number allocation method reduces the ACK/NACK (Acknowledgment/Negative Acknowledgment) collision probability in a mixed system containing an LTE (Long Term Evolution) system and an LTE+ (Long Term Evolution Advanced) system. A CCE (Control Channel Element)+ number is defined by selecting a number from CCE numbers of the CCE to contain PDCCH (Physical Downlink Control Channel) allocated in a resource element region constituting CCE+ where PDCCH+ is arranged. This can prevent overlapped selection of the CCE number and the CCE+ number even when the PDCCH and the PDCCH+ are simultaneously transmitted, thus making it possible to reduce the collision probability of ACK/NACK correlated to the CCE number and the CCE+ number.
Abstract:
A radio communication base station device can efficiently obtain a multiuser diversity gain from frequency scheduling while reducing the amount of a reference signal occupying an uplink. In the device, a grouping section divides a plurality of RBs (Resource Blocks) into a plurality of RB groups. An RB group control unit performs a control to change the correspondence relationship between the RBs and the RB groups with time. When the grouping section divides the RBs into the RB groups, the RB control unit performs a control to change a combination of the RBs included in each of the RB groups with time. A scheduling section performs a scheduling of allocating each of a plurality of mobile stations to each of the RBs in each of the RB groups according to the reception quality of the reference signal.