Abstract:
Various aspects directed towards expediting an inter-RAT (radio access technology) reselection are disclosed. A user equipment (UE) operates according to a first RAT and utilizes an evolved multimedia broadcast multicast service (eMBMS) via the first RAT. A second RAT, which is unable to support eMBMS, is selected such that operation of the UE transitions from the first RAT to the second RAT. A reselection of the first RAT is then expedited by modifying at least one of a dormancy timer value initialization, a reselection timer value initialization, or a frequency priority.
Abstract:
Methods, systems, and devices are described for hierarchical communications and low latency support within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing. In some examples symbols of different duration may be multiplexed such that they different symbol durations coexist.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a user service description (USD) message. When a frequency indicated in the USD message is not a current frequency, the apparatus determines that a system information message is received, determines that the frequency indicated in the USD message is included in the system information message, determines that the frequency is a neighboring cell frequency, sets a priority of the frequency to a highest priority, and measures a signal strength of the frequency when the frequency is included in the system information message, performs a cell reselection determination procedure based on the signal strength of the frequency, performs cell reselection to the neighboring cell based on a result of the cell reselection determination procedure, and acquires the multicast service in the neighboring cell on the frequency.
Abstract:
Local IP access is provided in a wireless network to facilitate access to one or more local services. In some implementations, different IP interfaces are used for accessing different services (e.g., local services and operator network services). A list that maps packet destinations to IP interfaces may be employed to determine which IP interface is to be used for sending a given packet. In some implementations an access point provides a proxy function (e.g., a proxy ARP function) for an access terminal. In some implementations an access point provides an agent function (e.g., a DHCP function) for an access terminal. NAT operations may be performed at an access point to enable the access terminal to access local services. In some aspects, an access point may determine whether to send a packet from an access terminal via a protocol tunnel based on the destination of the packet.
Abstract:
Systems, methods, and devices for network communication of data are described. One method described includes determining a characteristic of data to be communicated. The method includes selecting, via a processor, one of a plurality of communication pathways based at least on the determined characteristic, wherein selecting is independent of an air interface used to communicate the data. The method further includes establishing the selected communication pathway if the selected pathway has not been established. The method further includes communicating the data via the selected communication pathway.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
In some cases, V2X systems may send warning messages. The warning messages may be sent over short distances. The warning messages may be useful over wider distances. Some systems may us MBMS from a V2X proximity broadcast. Electronic communications devices, such as UEs may be unaware of the MBMS. A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an RSU. The RSU receive a V2X message from a UE. The RSU may broadcast information associated with the V2X message. The RSU may send the information associated with the V2X message to a network entity for a point-to-multipoint broadcast. The method, an apparatus, and a computer program product for wireless communication may also use V2X messages that include bootstrapping information to tune to an MBMS broadcast.
Abstract:
Methods, systems, and devices are described for decreasing user plane latency in a wireless communication system. This may include routing a portion of bearer traffic to or from a UE through a local or serving gateway, or within or between base stations, rather than via the core network. In some examples, techniques for selected internet protocol flow ultra-low latency (SIPFULL) for systems in which users may have subscribed to enhanced services may be employed. The network may, for instance, authorize SIPFULL functionalities for UEs per access point name (APN) based on individual services subscribed by the UE to improve overall quality of service (QoS). In some examples, a UEs latency requirements or SIPFULL authorizations may affect mobility operations.
Abstract:
Diversity enhancement for multiple carrier systems is disclosed which includes generation of a multiplexed multicarrier radio frequency (RF) signal having N carriers organized to be accessed at a rate of one carrier access per multicast channel (MCH) scheduling period (MSP) per carrier of the N carriers, thereby requiring N accesses per MSP duration across the N carriers. The method may also include the base station transmitting the RF signal to a user equipment (UE). In other aspects, the diversity enhancements include the UE receiving a multiplexed multicarrier RF signal having N carriers. The UE may access the N carriers by performing one carrier access per MSP per carrier of the N carriers, thereby performing N accesses per MSP duration across the N carriers.
Abstract:
Multiple protocol tunnels (e.g., IPsec tunnels) are deployed to enable an access terminal that is connected to a network to access a local network associated with a femto access point. A first protocol tunnel is established between a security gateway and the femto access point. A second protocol tunnel is then established in either of two ways. In some implementations the second protocol tunnel is established between the access terminal and the security gateway. In other implementations the second protocol tunnel is established between the access terminal and the femto access point, whereby a portion of the tunnel is routed through the first tunnel.