摘要:
Embodiments of a multi-radio communication device and method for enabling coexistence between a Bluetooth transceiver and a broadband wireless access network (BWAN) transceiver are generally described herein. In some embodiments, the BWAN transceiver is configured to transmit a reservation request to a BWAN base station to reserve an amount of time during which no uplink transmissions are scheduled. The reservation request is configured to allow the Bluetooth transceiver to receive packets from a Bluetooth device without interference from transmissions by the BWAN transceiver.
摘要:
In a multi-radio platform that operates in two networks, both the announced beacon intervals and the actual beacon intervals in one network may be periodically increased and decreased in defined amounts so that the beacons will not overlap scheduled communications with the other network. The determination of how much and how often to adjust these beacon intervals may be based, at least partially, on the minimum increments in which the beacons intervals are permitted to be adjusted, and on the scheduled communications intervals of the other network.
摘要:
A first radio in a wireless network may request a transmit opportunity (TXOP) of a certain duration, with the duration being based a likelihood that a TXOP of that duration would cause interference with a co-located second radio. The duration may be dynamically adjusted based on the likelihood of such interference.
摘要:
Embodiments of systems and methods for time domain multiplexing solutions for in-device coexistence are generally described herein. Other embodiments may be described and claimed.
摘要:
Methods and systems to implement a physical device to differentiate amongst multiple virtual machines (VM) of a computer system. The device may include a wireless network interface controller. VM differentiation may be performed with respect to configuration controls and/or data traffic. VM differentiation may be performed based on VM-specific identifiers (VM IDs). VM IDs may be identified within host application programming interface (API) headers of incoming configuration controls and data packets, and/or may be looked-up based on VM-specific MAC addresses associated with data packets. VM IDs may be inserted in API headers of outgoing controls and/or data packets to permit a host computer system to forward the controls and/or packets to appropriate VMs. VM IDs may be used look-up VM-specific configuration parameters and connection information to reconfigure the physical device on a per VM basis. VM IDs may be used look-up VM-specific security information with which to process data packets.
摘要:
Embodiments of a multi-radio communication device and method for enabling coexistence between a Bluetooth transceiver and a broadband wireless access network (BWAN) transceiver are generally described herein. In some embodiments, the BWAN transceiver is configured to transmit a reservation request to a BWAN base station to reserve an amount of time during which no uplink transmissions are scheduled. The reservation request is configured to allow the Bluetooth transceiver to receive packets from a Bluetooth device without interference from transmissions by the BWAN transceiver.
摘要:
A wireless communications device in a first network with contention-based access may send a special frame to one or more other devices in the first network, informing them that it will not be available to receive any transmissions during a specified time period. The frame may also specify a delay period, indicating when the period of unavailability will start. When the device sending the special frame also has a co-located radio that operates in a second network that uses centrally-controlled scheduling, this special frame may be used to prevent other devices in the first network from sending it any transmissions while the co-located radio is communicating in the second network, thereby reducing the chance of interference between the two co-located radios.
摘要:
Embodiments of a multi-radio wireless communication device having a Worldwide Interoperability for Microwave Access (WiMax) radio module and a Bluetooth (BT) radio module and methods for communicating are generally described herein. Other embodiments may be described and claimed. In some embodiments, a WiMax active signal is asserted by a coexist controller of the WiMax radio module during receipt of a downlink subframe, and the BT radio module aligns a BT slot boundary of either master-to-slave or slave-to-master slot based on timing information conveyed by the WiMax active signal. The WiMax active signal may be de-asserted by the coexist controller during transmission of an uplink subframe by the WiMax radio module.
摘要:
Embodiments of a multi-radio wireless communication device and methods for synchronizing wireless network and Bluetooth (BT) communications are generally described herein. Other embodiments may be described and claimed. In some embodiments, a BT radio module adjusts a master clock signal by a predetermined step size before each subsequent BT transmission in response to a frame sync pulse from a wireless network radio module to reduce a time difference between subsequent frame sync pulses and synchronization reference points of BT slots.
摘要:
Methods and arrangements for link rate adaptation in multi-radio co-existence platforms (MRPs) are contemplated. Embodiments include transformations, code, state machines or other logic to determine an overlap between receiving by a wireless device of the MRP and transmitting by other of the wireless devices of the MRP and to select a link rate of the wireless device of the MRP based upon the determining an overlap. The embodiments may also include communicating the determined link rate to a wireless device transmitting to the wireless device of the MRP. Embodiments may also include selecting a previously used link rate if the receiving overlaps the transmitting. Embodiments may also include basing the link rate upon an overlapping or non-overlapping Signal-to-Interference-Plus-Noise-Ratio depending on the relative amounts of overlapping and non-overlapping.