摘要:
A reduced permittivity interlevel dielectric is provided. The interlevel dielectric is formed between two levels of interconnect. The interlevel dielectric comprises a first dielectric layer formed from a TEOS source deposited on a first level interconnect. The first dielectric contains air gaps at spaced intervals across the first dielectric. A second dielectric, preferably from a silane source is deposited upon said first dielectric. A second interconnect level is then placed on the second dielectric.
摘要:
A method of forming a recessed interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween. The method of forming a recessed interconnect structure comprises forming a substantially coplanar set of the first conductors upon a semiconductor substrate, depositing a first dielectric layer on said first conductors, forming a trench in the first dielectric layer, depositing a conductive material in the trench, planarizing the conductive material an upper surface of the conductive material is substantially coplanar with an upper surface of the first dielectric, etching the conductive material until the upper surface of the conductive material is displaced below the upper surface of the first dielectric, forming a second dielectric on the conductive material and the first dielectric layer.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
An integrated circuit is provided having an improved interconnect structure. The interconnect structure includes a power-coupled local interconnect which is always retained at VDD or VSS (i.e., ground) level. The local interconnect resides a dielectric-spaced distance below critical runs of overlying interconnect. The powered local interconnect serves to sink noise transients from the critical conductors to ensure that circuits connected to the conductors do not inoperably function. Accordingly, the local interconnect extends along a substantial portion of the conductor length, and is either wider or narrower than the conductor under which it extends. The local interconnect can either be polysilicon, doped polysilicon, polycide, refractory metal silicide, or multi-level refractory metal.
摘要:
A method for forming a multilevel interconnect structure having a globally planarized upper surface. Dielectrics are deposited upon a semiconductor to minimize pre-existing disparities in topographical height and to create an upper surface topography having a polish rate greater than that of lower regions. Subsequent chemical mechanical polishing produces a substantially planar surface.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. Accordingly, a space between conductors on one level is directly above or directly below a conductor within another level. The staggered interconnect lines are advantageously used in densely spaced regions to reduce the interlevel and intralevel capacitance. Furthermore, an interlevel and an intralevel dielectric structure includes optimally placed low K dielectrics which exist in critical spaced areas to minimize capacitive coupling and propagation delay problems. The low K dielectric, according to one embodiment, includes a capping dielectric which is used to prevent corrosion on adjacent metallic conductors, and serves as an etch stop when conductors are patterned. The capping dielectric further minimizes the overall intrinsic stress of the resulting intralevel and interlevel dielectric structure.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.
摘要:
A fabrication process is provided that produces an air gap dielectric in which a multi-level interconnect structure is formed upon a temporary supporting material. The temporary material is subsequently dissolved away leaving behind an intralevel and an interlevel dielectric comprised of air. In one embodiment of the invention, a first interconnect level is formed on a barrier layer. A temporary support material is then formed over the first interconnect level and a second level of interconnect is formed on the temporary support material. Prior to formation of the second interconnect level, a plurality of pillar openings are formed in the temporary material and filled with a conductive material. In addition to providing a contact between the first and second level of interconnects, the pillars provide mechanical support for the second interconnect level. The temporary material is dissolved in a solution that attacks the temporary material but leaves the interconnect material and pillar material intact. In one embodiment of the invention, a passivation layer is formed on the second interconnect level prior to dissolving the temporary material. The air gap dielectric can be used with more than two levels of interconnect, if desired.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.