Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may cause processor to receive a set of user data associated with a user that is attempting to access an electronic lock, receive a request to actuate a locking mechanism of the electronic lock configured to prevent the user from accessing a machine in an industrial automation system, actuate the locking mechanism in response to the request and the set of user data corresponding to an expected set of data, store a log of the request and the set of user data, and send the log to a cloud-based computing system.
Abstract:
A reversible adhesive apparatus includes a base and an adhesive layer. The base is configured with a series of concave and convex shapes at a top surface of the base according to some embodiments. The base is configured with a raised portion and a surrounding portion at a top surface of the base according to some other embodiments. The adhesive layer is disposed on top of the base. The adhesive layer configured to provide reversible adhesion on a top surface of the adhesive layer.
Abstract:
In one embodiment, a multi-purpose sensor may couple to a machine operating in an industrial environment and include numerous sensors disposed within the multi-purpose sensor to acquire sets of data associated with the machine or an environment surrounding the machine. A first portion of the sets of data may include historical sensor measurements over time for each of the sensors, and a second portion of the sets of data may include sensor measurements subsequent to when the first portion is acquired for each of the sensors. A processor of the multi-purpose sensor may determine a baseline collective signature based on the first portion, determine a subsequent collective signature based on the second portion, determine whether the collective signatures vary, and generate signals when a variance exists. The signals may cause a computing device, a cloud-based computing system, and/or a control/monitoring device to perform various actions.
Abstract:
An industrial visualization system defines and enforces a virtual safety shield comprising a three-dimensional space surrounding a wearer of a client device. The dimensions of the virtual safety shield are defined by a specified safe distance surrounding the user that allows sufficient reaction time in response to notification that the wearer is at risk of interacting with a safety zone, hazardous machinery, or vehicles within the plant. If a boundary of a safety zone or hazardous equipment falls within the three-dimensional space defined by the virtual safety shield, the system sends a notification to the user's client device, or places the hazardous equipment in a safe operating mode.
Abstract:
An industrial control configuration can be a dynamic entity where different controllers are added, are subtracted, fail, etc. When dynamic functions occur, bindings of the configuration can benefit from a modification. Therefore, automatic adjustment of bindings can occur to facilitated improved operation. Automatic adjustment can be practiced when the industrial control configuration is a distributed control configuration without reliance upon a central database.
Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
The claimed subject matter provides a system and/or method that facilitates employing safety within an industrial environment. An enhancing component can implement at least one of a security level, authentication, authorization, or an access right to a validated action to at least one of the controller or the controller engine instance. The enhancing component can further separate two or more entities within the industrial environment, the first entity related to process control and the second entity related to process safety. Additionally, the enhancing component can employ at least one of a backup controller or a backup controller engine instance in the event of at least one of a software error or a hardware error within the industrial environment.
Abstract:
In one embodiment, a manifold apparatus may include a number of housings. The housings may receive an electrical or a fluid conduit. The manifold apparatus may also include an actuation mechanism of each of the number of housings configured to control a supply of electricity or fluid from the respective electrical or fluid conduit to one or more industrial automation equipment, and a locking mechanism including a number of armatures. Each of the number of armatures is associated with a respective housing of the plurality of housings, and each of the number of armatures is configured to physically prevent a respective actuation mechanism of the respective housing from changing states.
Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
In one embodiment, a system includes an industrial automation device and a computing device. The computing device includes a display configured to display a set of procedures. The computing device also includes a processor configured to receive an input after each step of the set of procedures is performed by a user, analyze the input in view of one or more scoring factors associated with performance of the at least one step, determine a first score for the user, the industrial automation device, or both based on the scoring factors, and store the first score in a cloud-based computing system. The cloud-based computing system is configured to provide access to the first score.