Abstract:
Methods of forming an electronic device comprise: (a) providing a semiconductor substrate comprising a porous feature on a surface thereof; (b) applying a composition over the porous feature, wherein the composition comprises a polymer and a solvent, wherein the polymer comprises a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and (c) heating the composition; wherein the polymer is disposed in pores of the porous feature. The methods find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
Abstract:
Methods of forming an electronic device comprise: (a) providing a semiconductor substrate comprising a porous feature on a surface thereof; (b) applying a composition over the porous feature, wherein the composition comprises a polymer and a solvent, wherein the polymer comprises a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and (c) heating the composition; wherein the polymer is disposed in pores of the porous feature. The methods find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
Abstract:
A composition comprising a polymer and a solvent, wherein the polymer comprises: a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and an endcapping group that is free of polymerizable vinyl groups and hydroxyl groups. The compositions find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
Abstract:
A copolymer include repeat units derived from an acid-labile monomer, an aliphatic lactone-containing monomer, a C1-12 alkyl(meth)acrylate in which the C1-12 alkyl group includes a specific base-soluble group, a photoacid-generating monomer that includes an aliphatic anion, and a neutral aromatic monomer having the formula wherein R1, R2, R3, X, m, and Ar are defined herein. The copolymer is used as a component of a photoresist composition. A coated substrate including a layer of the photoresist composition, and a method of forming an electronic device using the coated substrate are described.
Abstract:
A copolymer includes repeat units derived from a lactone-substituted monomer, a base-soluble monomer having a pKa less than or equal to 12, a photoacid-generating monomer, and an acid-labile monomer having the formula wherein R1, R2, R3, and Ar are defined herein. The copolymer can be used as a component of a photoresist composition, and the photoresist composition can be coated on a substrate having one or more layers to be patterned, or used in a method of forming an electronic device.
Abstract:
A copolymer include repeat units derived from an acid-labile monomer, an aliphatic lactone-containing monomer, a C1-12 alkyl (meth)acrylate in which the C1-12 alkyl group includes a specific base-soluble group, a photoacid-generating monomer that includes an aliphatic anion, and a neutral aromatic monomer having the formula wherein R1, R2, R3, X, m, and Ar are defined herein. The copolymer is used as a component of a photoresist composition. A coated substrate including a layer of the photoresist composition, and a method of forming an electronic device using the coated substrate are described.