Abstract:
To provide a novel organometallic complex. The organometallic complex is represented by General Formula (G1) and includes a central metal, a first ligand, and a second ligand. The first ligand and the second ligand are cyclometalated ligands. At least one of the first ligand and the second ligand includes a substituted or unsubstituted aryl group as a substituent. In General Formula (G1), each of R1 to R15 independently represents any of hydrogen, a halogen group, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. Note that at least one of R1 to R15 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
Abstract:
A light-emitting element is provided, including a first electrode and a second electrode, a first layer including first and second organic compounds, the first layer being formed between the first electrode and the second electrode wherein the first organic compound is capable of emitting a first light and the second organic compound has an electron transporting property, and a second layer including third and fourth organic compounds, the second layer being formed between the first layer and the second electrode wherein the third organic compound is capable of emitting a second light and has an electron trap property and the fourth organic compound has an electron transporting property.
Abstract:
A novel compound in which a delayed fluorescence component due to TTA accounts for a high proportion of emissive components is provided. The organic compound includes an anthracene skeleton, an arylene group, and a substituted or unsubstituted heterocyclic group including a carbazole skeleton. The anthracene skeleton and the substituted or unsubstituted heterocyclic group including the carbazole skeleton are bonded to each other through the arylene group. The anthracene skeleton includes an aryl group at the 2-position or the 3-position.
Abstract:
A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.
Abstract:
To provide a novel light-emitting device with high productivity, the light-emitting device includes a first light-emitting element, a second light-emitting element, and a third light-emitting element. In the first light-emitting element, a first lower electrode, a first transparent conductive layer, a first light-emitting layer, a second light-emitting layer, and an upper electrode are stacked in this order. In the second light-emitting element, a second lower electrode, a second transparent conductive layer, the first light-emitting layer, the second light-emitting layer, and the upper electrode are stacked in this order. In the third light-emitting element, a third lower electrode, a third transparent conductive layer, the second light-emitting layer, and the upper electrode are stacked in this order. The first transparent conductive layer includes a first region. The second transparent conductive layer includes a second region as thick as the third transparent conductive layer. The first region is thicker than the second region.
Abstract:
Disclosed is a light-emitting element with a microcavity structure which is capable of amplifying a plurality of wavelengths to give emission of a desired color. The light-emitting element includes a pair of electrodes and an EL layer having a light-emitting substance interposed between the pair of electrodes. One of the pair of electrodes gives a reflective surface and the other electrode gives a semi-reflective surface. The light-emitting element is arranged so that the emission of the light-emitting substance covers at least two wavelengths λ and an optical path length L between the reflective surface and the semi-reflective surface satisfies an equation L=nλ/2 where n is an integer greater than or equal to 2.
Abstract:
A novel display device that is highly convenient with low power consumption is provided. The display device includes a display element including a liquid crystal layer, a display element including a light-emitting layer, a first transistor, and a second transistor. The first transistor is electrically connected to an electrode of the display element including the liquid crystal layer, and the second transistor is electrically connected to an electrode of the display element including the light-emitting layer. The electrode of the display element including the liquid crystal layer and the electrode of the display element including the light-emitting layer each include a reflective film and a conductive film. The reflective film of the display element including the liquid crystal layer has a region containing a metal contained in the reflective film of the display element including the light-emitting layer.
Abstract:
Provided is a novel compound or a light-emitting element with high emission efficiency. The provided novel compound includes a bicarbazole skeleton and a benzofuropyrimidine skeleton or a benzothienopyrimidine skeleton. The provided light-emitting element includes the compound.
Abstract:
To provide a light-emitting element with high emission efficiency and low driving voltage. The light-emitting element includes a guest material and a host material. A LUMO level of the host material is higher than a LUMO level of the host material, and a HOMO level of the guest material is lower than a HOMO level of the host material. The guest material has a function of converting triplet excitation energy into light emission. The difference between a singlet excitation energy level and a triplet excitation energy level of the host material is greater than 0 eV and less than or equal to 0.2 eV. The energy difference between the LUMO level and the HOMO level of the host material is larger than or equal to light emission energy of the guest material.
Abstract:
A novel heterocyclic compound is provided. In particular, a novel heterocyclic compound which can improve the element characteristics of the light-emitting element is provided. The heterocyclic compound is represented by a general formula (G1) DBq-(Ar1)-n-Ar2-A (G1) in which a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group and a substituted or unsubstituted benzobisbenzofuranyl group are bonded to each other via a substituted or unsubstituted arylene group. In the general formula (G1), DBq represents a substituted or unsubstituted dibenzo [f,h] quinoxalinyl group, Ar1 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, n represents 0 or 1, Ar2 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms, and A represents a substituted or unsubstituted benzobisbenzofuranyl group. When the arylene group represented by Ar1 and Ar2 has substituents, the substituents may be bonded to each other to form a ring.