Abstract:
Provided may be a semiconductor device using magnetic domain wall movement. The semiconductor device may include a magnetic track having a plurality of magnetic domains and a thermal conductive insulating layer configured to contact the magnetic track. The thermal conductive insulating layer may prevent or reduce the magnetic track from being heated due to a current supplied to the magnetic track.
Abstract:
A fuel cell system with a purging device and a method for stopping the operation of a fuel cell system comprising: a reforming device comprising a heat source unit to generate combustion heat to supply a reforming unit with heat to catalytically reform fuel to a hydrogen rich reforming gas; a fuel cell stack to generate electric energy by electrochemically reacting the reforming gas with an oxidizer and having an anode supplied with the reforming gas and a cathode supplied with the oxidizer therein; and a purging device to block the reforming gas and the oxidizer from the fuel cell stack and to supply an exhaust gas from the heat source unit into the fuel cell stack.
Abstract:
Provided is a magnetic memory device that uses a current induced switching (CID) method. The magnetic memory device that uses a CID method includes a lower electrode, a magnetic resistance structure that is formed on the lower electrode which comprises a free layer whose widths of two sides are varied, and an upper electrode formed on the magnetic resistance structure.
Abstract:
A perpendicular magnetic recording medium is provided, the perpendicular magnetic recording medium including: a substrate; a first soft magnetic underlayer formed on the substrate; a perpendicular anisotropic middle layer that is formed on the first soft magnetic underlayer and has perpendicular magnetic anisotropy; a second soft magnetic underlayer formed on the perpendicular anisotropic middle layer; and a perpendicular magnetic recording layer formed on the second soft magnetic underlayer.
Abstract:
Provided is a magnetic memory device. The magnetic memory device includes a first magnetization layer, a tunnel barrier disposed on the first magnetization layer, a second magnetization layer disposed on the tunnel barrier, and a spin current assisting layer disposed on at least a portion of a sidewall of the second magnetization layer.
Abstract:
An oscillator and a method of operating the same are provided, the oscillator may include a free layer, a pinned layer on a first surface of the free layer, and a reference layer on a second surface of the free layer. The free layer may have a variable magnetization direction. The pinned layer may have a pinned magnetization direction. The reference layer may have a magnetization direction non-parallel to the magnetization direction of the pinned layer.
Abstract:
A magnetic memory device includes a track in which different non-magnetic layers are respectively formed on upper and lower surfaces of a magnetic layer. One of the two non-magnetic layers includes an element having an atomic number greater than or equal to 12. Accordingly, the magnetic layer has a relatively high non-adiabaticity (β).
Abstract:
An apparatus for moving a magnetic domain wall and a memory device using a magnetic field application unit are provided. The apparatus for moving a magnetic domain wall includes a magnetic layer having a plurality of magnetic domains; current supply units that are disposed on both sides of the magnetic layer and supply current to the magnetic layer; and a magnetic field application unit that is disposed on at least one surface of the magnetic layer and applies a magnetic field to the magnetic layer.
Abstract:
An optical element and an information storage device including the same. The optical element may include an optical waveguide structure for transforming circularly polarized light into plasmon and transmitting the plasmon. The optical waveguide structure may emit a circularly polarized plasmonic field. The optical element may be used in an information storage device. For example, the information storage device may include a recording medium and a recording element for recording information on the recording medium, and the recording element may include the optical element. The information may be recorded on the recording medium by using the circularly polarized plasmonic field generated by the optical element.
Abstract:
Oscillators and methods of manufacturing and operating the same are provided, the oscillators include a pinned layer, a free layer and a barrier layer having at least one filament between the pinned layer and the free layer. The pinned layer may have a fixed magnetization direction. The free layer corresponding to the pinned layer. The at least one filament in the barrier layer may be formed by applying a voltage between the pinned layer and the free layer. The oscillators may be operated by inducing precession of a magnetic moment of at least one region of the free layer that corresponds to the at least one filament, and detecting a resistance change of the oscillator due to the precession.