Abstract:
A system (and method) automatically extends a scheduled recording of a live event past its scheduled end time. The system include includes a content interface to receive program content. The system also includes a user interface to permit a user to schedule a user-selected program content for recording. The user-selected program content has a scheduled start time and a scheduled end time. A program content analyzer may detect a pattern in the user-selected program content. A recording unit may record the user-selected program content and automatically extend the recording past the scheduled end time based on whether the pattern is detected.
Abstract:
A method for communicating in a wireless sensor network (WSN) is described. Using control logic, a first wireless transceiver is caused to transmit a wireless packet to a node in a wireless sensor network. The control logic bases its causing on a transmission coinciding with a break in transmission for a second wireless network, such that the transmission from the first wireless transceiver does not coincide with transmissions made on the second wireless network. Time synchronized channel hopping (TSCH) slot frames for wireless packet transmission in the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing TSCH. Wake up sequence transmissions for the wireless sensor network are caused to be time offset if the first wireless transceiver is utilizing coordinated sampled listening (CSL).
Abstract:
A wireless device that tailors communications based on power parameters of the device. In one embodiment, a wireless device includes an energy source, a power monitor coupled to the energy source, a wireless transceiver, and a traffic controller coupled to the power monitor and the wireless transceiver. The power monitor is configured to measure a parameter of the energy source. The wireless transceiver is configured to wirelessly communicate via a wireless network. The traffic controller is configured to dynamically provide traffic management based on a prediction of wireless device capabilities using the present state of the energy source.
Abstract:
A device may be coupled to a time slot based communication system and receive a timing beacon packet that is broadcast in a time slot of the communication system at a periodic rate, in which the network uses a time slotted channel hopping protocol of sequential frames each having a plurality of time slots. The device may synchronize its time base to the timing beacon. The device may calculate a sleep time corresponding to a number of time slots until a next time slot that is scheduled for use by the device and then place the device in a sleep mode. The device may be awakened after the sleep time and operate during the next time slot. The device may repeat the process of calculating a sleep time, going into sleep mode, and waking for operation after the sleep time in order to reduce power consumption.
Abstract:
In accordance with various embodiments, a system and method of distributed transmission resource management in a wireless network is disclosed. The transmission resource allocation is distributed throughout the network to all nodes. In distributed resource management, the resource allocation may be performed by child and/or remote nodes and child and/or remote nodes actively manage transmission resource allocation in the wireless network.
Abstract:
An optimal frequency hopping sequence (FHS) is proposed. The FHSs can be generated with low computation complexity using the disclosed FHS generation mechanism. The sequence generation according to the embodiments provides a way to generate optimal FHS when channel-number is power of 2 using only 1 sequence. This gives an efficient way to generate optimal FHSs with frequent used channel-numbers for example, channel-numbers 2, 4, 8, 16, and others. These FHSs also provide good interfering probability when channel-number is not a power of 2. This makes TSCH with blacklisting more suitable for IEEE 802.15.4e networks operating in the presence of interference due to decrease in power consumption.
Abstract:
A method of transmitting association requests in a wireless sensor network includes transmitting an association request from a leaf node to an intermediate node. The method further includes transmitting the association request from the. intermediate node during one of either a shared time slot or a dedicated time slot in response to at least one of the timing of dedicated time slots and data collision rates during shared time slots.
Abstract:
A wireless combination device is coupled to an antenna for communicating via a first wireless network. A second wireless transceiver configured for communication via said second wireless network. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
This invention is an improvement of a Hierarchical Do-Dag based RPL (H-DOC) network configuration where the network address of each node corresponds to its location within the hierarchical network. Network addresses are initialized hierarchically. Candidate patent nodes signal availability. Candidate child nodes respond to a selected candidate parent node with a temporary address. The selected candidate parent node acknowledges selection and communicates a hierarchical address for the child node in a transmission to the temporary address. The child node changes its address to the hierarchical address from the parent node. When a node switches parent nodes, it signals the old parent node to deallocate it as a child node, and then signals a selected candidate parent node with a temporary address.
Abstract:
A device operated in a network using a channel hopping communication protocol may select a channel for each transmission by first generating and storing a sequence of pseudo-random index numbers. A list of good channels is selected from a plurality of channels. For each channel hop, one of the good channels is selected from the list of good channels for use by a transceiver in the device by using an index number selected from the sequence of pseudo-random index numbers. The list of good channels may be revised periodically and channels may be selected from the list of good channels for use by the transceiver without revising the sequence of pseudo-random index numbers.