Abstract:
An ultrasound diagnostic apparatus includes an ultrasound probe which transmits/receives an ultrasound wave with respect to a subject to be diagnosed, an ultrasound wave transmit section which transmits an ultrasound wave for driving the ultrasound probe, a pressing section which applies an external pressure to the subject, a displacement measuring section which obtains two tomographic image data different in time series from a reflected echo signal received from the ultrasound probe and measures a displacement of each part in the subject based on the two tomographic image data, an image generating section which generates an elastic image from elasticity information based on the displacement of each part measured by the displacement measuring section, and a display section which displays the generated elastic image. Further, a pressing decision section decides whether or not the pressing operation by the pressing section is proper.
Abstract:
Methods of manufacturing a semiconductor device including a semiconductor substrate and a hetero semiconductor region including a semiconductor material having a band gap different from that of the semiconductor substrate and contacting a portion of a first surface of the semiconductor substrate are taught herein, as are the resulting devices. The method comprises depositing a first insulating film on exposed portions of the first surface of the semiconductor substrate and on exposed surfaces of the hetero semiconductor material and forming a second insulating film between the first insulating film and facing surfaces of the semiconductor substrate and the hetero semiconductor region by performing a thermal treatment in an oxidizing atmosphere.
Abstract:
A non-aqueous electrolyte secondary battery including: a positive electrode; a negative electrode; a separator interposed between the positive electrode and the negative electrode; a non-aqueous electrolyte; and a porous insulating film adhered to a surface of at least one selected from the group consisting of the positive electrode and the negative electrode, the porous insulating film including an inorganic oxide filler and a film binder, wherein the ratio R of actual volume to apparent volume of the separator is not less than 0.4 and not greater than 0.7, and wherein the ratio R and a porosity P of the porous insulating film satisfy the relational formula: −0.10≦R−P≦0.30.
Abstract:
An image compression device provided for effective utilization of the memory used for image storage and for attaining a reduction in the compression processing time of an image. An image quality evaluation value calculation section calculates the image quality evaluation value of the block for image quality evaluation value calculation which is compressed using four quantization tables in which the quantized data in each is different. A quantization table selection section calculates an approximation curve for approximations or supplies the image quality evaluation value of the block for image quality evaluation value calculation for each quantization table and from the calculated approximation curve further calculates a standard table value for practicable compression to reduce the file size without deterioration of the image quality. Subsequently, a quantization section compresses the original image data using the quantization table with the calculated standard table value.
Abstract:
An electrostatic discharge protection circuit and a semiconductor device that prevent the breakdown of a semiconductor device caused by an electrostatic discharge (ESD) which suddenly changes. When voltage which is far higher than VDD1 is applied to a power supply line as a result of an ESD, a great electric potential difference is produced between VDD1 and VSS. At this time an electric current path for making an electric charge generated by overvoltage flow to a grounding line is formed by a clamp circuit. As a result, an electric current flows into GND of a circuit block. This prevents the production of a great electric potential difference between VDD1 and VSS. In addition, at this time a rapid change in the level of the overvoltage applied to a signal line is suppressed by a protection circuit. This prevents the dielectric breakdown of gate oxide films of transistors included in a circuit block which receives a control signal.
Abstract:
A semiconductor device is provided with: a semiconductor substrate of a predetermined electroconduction type; a hetero semiconductor region contacted with a first main surface of the semiconductor substrate and comprising a semiconductor material having a bandgap different from that of the semiconductor substrate; a gate electrode formed through a gate insulator layer at a position adjacent to a junction region between the hetero semiconductor region and the semiconductor substrate; a source electrode connected to the hetero semiconductor region; and a drain electrode connected to the semiconductor substrate; wherein the hetero semiconductor region includes a contact portion contacted with the source electrode, at least a partial region of the contact portion is of the same electroconduction type as the electroconduction type of the semiconductor substrate, and the partial region has an impurity concentration higher than an impurity concentration of at least that partial region of a gate-electrode facing portion in the hetero semiconductor region which is positioned to face toward the gate electrode through the gate insulator layer.
Abstract:
As semiconductor regions in contact with a first main surface of a semiconductor base composed by forming an N− silicon carbide epitaxial layer on an N+ silicon carbide substrate connected to a cathode electrode, there are provided both of an N+ polycrystalline silicon layer of a same conduction type as a conduction type of the semiconductor base and a P+ polycrystalline silicon layer of a conduction type different from the conduction type of the semiconductor base. Both of the N+ polycrystalline silicon layer and the P+ polycrystalline silicon layer are hetero-joined to the semiconductor base, and are ohmically connected to the anode electrode. Moreover, the N+ polycrystalline silicon layer of the same conduction type as the conduction type of the semiconductor base is formed so as to contact the first main surface of the semiconductor base, and the P+ polycrystalline silicon layer of the conduction type different from the conduction type of the semiconductor base is formed in trenches dug on the first main surface of the semiconductor base.
Abstract:
An electrostatic discharge protection element and a protection resistor, which are formed on an N-drain region with a field oxide film interposed therebetween for the purpose of preventing electrical breakdown of a field effect transistor, are composed as a stacked bidirectional Zener diode of one or a plurality of N+ polycrystalline silicon regions of a first layer and a P+ polycrystalline silicon region of a second layer, and a stacked resistor of one or a plurality of N+ resistor layers of the first layer and an N+ resistor layer of the second layer, respectively. One end of the plurality of N+ polycrystalline silicon regions of the first layer is connected to an external gate electrode terminal, and the other end is connected to a source electrode. One end of the plurality of N+ resistor layers of the first layer is connected to a gate electrode, and the other end is connected to the external gate electrode terminal. Semiconductor regions of the first layer and the second layer are formed by using semiconductor films, which form a hetero semiconductor region and the gate electrode, respectively.
Abstract:
A plurality of gravure rolls are rotated while being allowed to abut against a surface of a moving electrode hoop, thereby applying a coating fluid serving as a precursor of porous layers onto a plurality of linear mixture layers. In this way, a plurality of linear porous layers are formed on the associated linear mixture layers formed on the surface of the electrode hoop. In this case, the location at which each gravure roll abuts against the surface of the electrode hoop is controlled according to variations in the lateral location of associated one of the mixture layers independently of the other gravure rolls.
Abstract:
A parking lock releasing apparatus includes a manipulator element operable to select a parking range of an automatic transmission, a sensor operable to detect a selection by the manipulator element, an actuator operable to operate a parking lock mechanism of the automatic transmission based on a detection by the sensor, and a manual lever operable to manually release an operation of the parking lock mechanism. The manual lever is operable on condition that a parking brake device is in operation.