Abstract:
Complementary high-voltage bipolar transistors in silicon-on-insulator (SOl) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
Abstract:
A semiconductor device includes a split-gate lateral extended drain MOS transistor, which includes a first gate and a second gate laterally adjacent to the first gate. The first gate is laterally separated from the second gate by a gap of 10 nanometers to 250 nanometers. The first gate extends at least partially over the body, and the second gate extends at least partially over a drain drift region. The drain drift region abuts the body at a top surface of the substrate. A boundary between the drain drift region and the body at the top surface of the substrate is located under at least one of the first gate, the second gate and the gap between the first gate and the second gate. The second gate may be coupled to a gate bias voltage node or a gate signal node.
Abstract:
A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
Abstract:
A method of fabricating a MOSFET transistor in a SiGe BICMOS technology and resulting structure having a drain-gate feedback capacitance shield formed between a gate electrode and the drain region. The shield does not overlap the gate and thereby minimizes effect on the input capacitance of the transistor. The process does not require complex or costly processing since the shield is composed of bipolar base material commonly used in SiGe BICMOS technologies.
Abstract:
Complementary high-voltage bipolar transistors formed in standard bulk silicon integrated circuits are disclosed. In one disclosed embodiment, collector regions are formed in an epitaxial silicon layer. Base regions and emitters are disposed over the collector region. An n-type region is formed under collector region by implanting donor impurities into a p-substrate for the PNP transistor and implanting acceptor impurities into the p-substrate for the NPN transistor prior to depositing the collector epitaxial regions. Later in the process flow these n-type and p-type regions are connected to the top of the die by a deep n+ and p+ wells respectively. The n-type well is then coupled to VCC while the p-type well is coupled to GND, providing laterally depleted portions of the PNP and NPN collector regions and hence, increasing their BVs.
Abstract:
Complementary high-voltage bipolar transistors in silicon-on-insulator (SOI) integrated circuits is disclosed. In one disclosed embodiment, a collector region is formed in an epitaxial silicon layer disposed over a buried insulator layer. A base region and an emitter are disposed over the collector region. An n-type region is formed under the buried insulator layer (BOX) by implanting donor impurity through the active region of substrate and BOX into a p-substrate. Later in the process flow this n-type region is connected from the top by doped poly-silicon plug and is biased at Vcc. In this case it will deplete lateral portion of PNP collector region and hence, will increase its BV.
Abstract:
Described examples include an integrated circuit having a transistor with a first gate on a first gate insulating layer. The transistor also has second gate separated from the first gate by a gate gap. The integrated circuit also includes a channel well at the gate gap extending under the first gate and the second gate. The transistor has a first source in the channel adjacent to an edge of the first gate. The transistor having a second source formed in the channel adjacent to an edge of the second gate separated from the first source by a channel gap. The transistor has at least one back-gate contact, the at least one back-gate contact separated from the first gate by a first back-gate contact gap and separated from the second gate by a second back-gate contact gap.
Abstract:
Breakdown diodes and methods of making the same are described. Such a breakdown diode can be fabricated in a semiconductor substrate and have a junction configured to breakdown under a target reverse bias applied across the junctions. The junction is located below the surface of the substrate by a distance suitable for ameliorating mechanical stress impact to the reverse bias breakdown voltage of the junction. Moreover, the junction is located away from an interface causing noise issues.
Abstract:
A method includes implanting dopant of a first conductivity type into an epitaxial layer of semiconductor material to form first and second false collector regions adjacent to the surface of the epitaxial layer. The first false collector region is located laterally on a first side of a base region. The base region is formed within the epitaxial layer from dopant of a second conductivity type that is opposite the first conductivity type. The second false collector region is located laterally on a second side of the base region. The second side is opposite the first side of the base region. The base region is a base of a parasitic bipolar junction in an isolation region of an active semiconductor device.
Abstract:
A method of fabricating a transistor includes forming a gate structure over a semiconductor substrate having a first conductivity type. A photoresist layer is patterned over the gate structure to remove the photoresist layer from over an uncovered portion of the gate structure and an adjacent region of the semiconductor substrate abutting the uncovered portion of the gate structure. A deep well region having the first conductivity type is formed using a first dopant such that the first dopant penetrates through the uncovered portion of the gate structure and is blocked by the photoresist layer. A shallow well region is formed by implanting a second dopant such that the second dopant penetrates the adjacent region and is blocked by the uncovered portion of the gate structure.