摘要:
A method for fabricating intra-device isolation structure is provided, including providing a semiconductor substrate with a mask layer formed thereover. A plurality of first trenches is formed in the semiconductor substrate and the mask layer. A first insulating layer is formed in the first trenches. The mask layer is partially removed to expose a portion of the first insulating layer in the first trenches. A protection spacer is formed on a sidewall surface of the portion of the first insulating layer exposed by the mask layer to partially expose a portion of the mask layer between the first insulating layer. An etching process is performed to the mask layer exposed by the protection spacer and the semiconductor substrate thereunder, and a plurality of second trenches is formed in the semiconductor substrate and the mask layer. A second insulating layer is formed in the second trenches. The protection spacer, the mask layer, the first insulating layer and the second insulating layer over a top surface of the semiconductor substrate are then removed.
摘要:
A method of forming a shallow trench isolation in a semiconductor substrate. First, a hard mask consisting of a pad nitride and a pad oxide is formed on the semiconductor substrate. The semiconductor substrate is anisotrpically etched to form a trench while the hard mask is used as the etching mask. A thermal oxide film is grown on the trench. Then, a nitride liner is formed on the thermal oxide film. Next, a silicon rich oxide layer is conformally deposited on the nitride liner by high density plasma chemical vapor deposition without a bias voltage applied to the semiconductor substrate. Then, a silicon oxide is deposited to fill the trench by high density plasma chemical vapor deposition while a bias voltage is applied to the semiconductor substrate.
摘要:
A method for forming an opening in a semiconductor device is provided, including: providing a semiconductor substrate with a silicon oxide layer, a polysilicon layer and a silicon nitride layer sequentially formed thereover; patterning the silicon nitride layer, forming a first opening in the silicon nitride layer, wherein the first opening exposes a top surface of the polysilicon layer; performing a first etching process, using gasous etchants including hydrogen bromide (HBr), oxygen (O2), and fluorocarbons (CxFy), forming a second opening in the polysilicon layer, wherein a sidewall of the polysilicon layer adjacent to the second opening is substantially perpendicular to a top surface of the silicon oxide layer, wherein x is between 1-5 and y is between 2-8; removing the silicon nitride layer; and performing a second etching process, forming a third opening in the silicon oxide layer exposed by the second opening.
摘要翻译:提供了一种在半导体器件中形成开口的方法,包括:向半导体衬底提供其上顺序形成的氧化硅层,多晶硅层和氮化硅层; 图案化氮化硅层,在氮化硅层中形成第一开口,其中第一开口暴露多晶硅层的顶表面; 使用包括溴化氢(HBr),氧(O 2)和碳氟化合物(C x F y)的气体蚀刻剂进行第一蚀刻工艺,在多晶硅层中形成第二开口,其中与第二开口相邻的多晶硅层的侧壁基本上 垂直于氧化硅层的顶表面,其中x在1-5之间,y在2-8之间; 去除氮化硅层; 以及进行第二蚀刻工艺,在由所述第二开口暴露的所述氧化硅层中形成第三开口。
摘要:
A method of bevel trimming a three dimensional (3D) semiconductor device is disclosed, comprising providing a substrate with stack layers thereon and through substrate vias (TSV) therein, wherein an edge of the substrate is curved, performing a bevel trimming step to the curved edge of the substrate for obtaining a planar edge, and thinning the substrate to expose the through substrate vias.
摘要:
An integrated circuit with a self-aligned contact includes a substrate with a transistor formed thereover, a dielectric spacer, a protection barrier, and a conductive layer. The transistor includes a mask layer and a pair of insulating spacers formed on opposite sides of the mask layer. The dielectric spacer partially covers at least one of the insulating spacers of the transistor. The protection barrier is formed over the dielectric spacer. The conductive layer is formed over the mask layer, the protection barrier, the dielectric spacer, the insulating spacer and the dielectric spacer as a self-aligned contact for contacting a source/drain region of the transistor.
摘要:
A vertical MOSFET electrostatic discharge device is disclosed, including a substrate comprising a plurality of trenches, a recessed gate disposed in each trench, a drain region disposed between each of the two neighboring recessed gates, an electrostatic discharge implant region disposed under each drain region, and a source region surrounding and disposed under the recessed gates and the electrostatic discharge implant regions.
摘要:
A power device with trenched gate structure, includes: a substrate having a first face and a second face opposing to the first face, a body region of a first conductivity type disposed in the substrate, a base region of a second conductivity type disposed in the body region, a cathode region of the first conductivity type disposed in the base region, an anode region of the second conductivity type disposed in the substrate at the second face a trench disposed in the substrate and extending from the first face into the body region, and the cathode region encompassing the trench, wherein the trench has a wavelike sidewall, a gate structure disposed in the trench and an accumulation region disposed in the body region and along the wavelike sidewall. The wavelike sidewall can increase the base current of the bipolar transistor and increase the performance of the IGBT.
摘要:
A method for forming a semiconductor structure with reduced line edge roughness is provided, including: providing a device layer with a patterned photoresist layer formed thereon; and performing a plasma etching process to pattern the device layer with the patterned photoresist layer formed thereon, forming a patterned device layer, wherein the plasma etching process is operated under a continuous on-stage voltage provided with a relative higher frequency and an on-off stage voltage with pulsing modulation provided with a relative lower frequency.
摘要:
A fabricating method of a transistor is provided. A patterned sacrificed layer is formed on a substrate, wherein the patterned sacrificed layer includes a plurality of openings exposing the substrate. By using the patterned sacrificed layer as a mask, a doping process is performed on the substrate, thereby forming a doped source region and a doped drain region in the substrate exposed by the openings. A selective growth process is performed to form a source and a drain on the doped source region and the doped drain region, respectively. The patterned sacrificed layer is removed to expose the substrate between the source and the drain. A gate is formed on the substrate between the source and the drain.
摘要:
A method for fabricating a fin-shaped semiconductor structure is provided, including: providing a semiconductor substrate with a semiconductor island and a dielectric layer formed thereover; forming a mask layer over the semiconductor island and the dielectric layer; forming an opening in the mask layer, exposing a top surface of the semiconductor island and portions of the dielectric layer adjacent to the semiconductor island; performing an etching process, simultaneously etching portions of the mask layer, and portions of the semiconductor island and the dielectric layer exposed by the opening; and removing the mask layer and the dielectric layer, leaving an etched semiconductor island with curved top surfaces and various thicknesses over the semiconductor substrate.