Abstract:
According to various embodiments, a fleet management system is provided for capturing, storing, and analyzing telematics data to improve fleet management operations. The fleet management system may be used, for example, by a shipping entity (e.g., a common carrier) to capture telematics data from a plurality of vehicle sensors located on various delivery vehicles and to analyze the captured telematics data. In particular, various embodiments of the fleet management system are configured to analyze engine idle data in relation to other telematics data in order to identify inefficiencies, safety hazards, and theft hazards in a driver's delivery process. The fleet management system may also be configured to assess various aspects of vehicle performance, such as vehicle travel delays and vehicle speeds. These analytical capabilities allow the fleet management system to assist fleet managing entities, or other entities, in analyzing driver performance, reducing fuel and maintenance costs, and improving route planning.
Abstract:
Various embodiments of the present invention are directed to a fleet management system configured for capturing and evaluating vehicle telematics data, such as data captured from one or more vehicle telematics devices indicative of one or more vehicle dynamics, and service data, such as data captured from one or more portable data acquisition devices indicative of one or more service dynamics. In certain embodiments, the fleet management system is configured to associate captured vehicle telematics data with captured service data based on the contextual attributes of each, such as the time, date, and location of data capture. By synching the vehicle telematics data to the service data, the operational data can be uniquely assessed for various operational efficiencies.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for defining travel paths in parking areas. In one embodiment, travel paths in parking areas are defined in a digital map by automatically, semi-automatically, and/or manually after the parking areas are identified from one or more captured images of the parking area.
Abstract:
Systems, methods, apparatuses, and computer program products are provided for determining carbon emissions of one or more vehicles. For instance, in one example embodiment, an apparatus may calculate miles traveled by the vehicles along a predefined route and may calculate a fuel usage of the vehicles for traveling along the route to obtain one or more fuel values. The apparatus may also analyze data indicating the miles traveled and the fuel values to determine fuel efficiency values corresponding to the vehicles traveling the route. The apparatus may also determine an estimate of an amount of carbon emissions for each of the vehicles based in part on applying at least one carbon emission value to respective fuel values associated with corresponding determined fuel efficiency values.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for defining travel paths in parking areas. In one embodiment, travel paths in parking areas are defined by connecting street networking connection points within the parking areas. In another embodiment, such defined travel paths are merged with actual paths traveled by vehicles in the parking areas.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for forecasting travel delays corresponding to streets, street segments, geographic areas, geofenced areas, and/or user-specified criteria. And from the forecasted travel delays, speed and travel times that take into account such travel delays can be determined.
Abstract:
According to various embodiments, a fleet management system is provided for capturing, storing, and analyzing telematics data to improve fleet management operations. The fleet management system may be used, for example, by a shipping entity (e.g., a common carrier) to capture telematics data from a plurality of vehicle sensors located on various delivery vehicles and to analyze the captured telematics data. In particular, various embodiments of the fleet management system are configured to analyze engine idle data in relation to other telematics data in order to identify inefficiencies, safety hazards, and theft hazards in a driver's delivery process. The fleet management system may also be configured to assess various aspects of vehicle performance, such as vehicle travel delays and vehicle speeds. These analytical capabilities allow the fleet management system to assist fleet managing entities, or other entities, in analyzing driver performance, reducing fuel and maintenance costs, and improving route planning.
Abstract:
Various embodiments of the present invention are directed to a fleet management system configured for capturing and evaluating vehicle telematics data, such as data captured from one or more vehicle telematics devices indicative of one or more vehicle dynamics, and service data, such as data captured from one or more portable data acquisition devices indicative of one or more service dynamics. In certain embodiments, the fleet management system is configured to associate captured vehicle telematics data with captured service data based on the contextual attributes of each, such as the time, date, and location of data capture. By synching the vehicle telematics data to the service data, the operational data can be uniquely assessed for various operational efficiencies.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for defining travel paths in parking areas. In one embodiment, travel paths in parking areas can be defined by connecting street networking connection points within the parking areas. In another embodiment, such defined travel paths can be merged with actual paths traveled by vehicles in the parking areas.
Abstract:
An apparatus is provided for detecting duplicate travel. The apparatus may include at least one memory and at least one processor configured to detect a travel path of a vehicle based in part on received items of location data. The processor is also configured to determine whether the travel path is associated with a defined street segment including a plurality of location points corresponding to a street. The processor is further configured to determine whether the vehicle travels the street multiple times in a predefined time period. The processor is further configured to superimpose visible indicia on the defined street segment in response to detecting that the vehicle traveled the street multiple times during the predefined time period. Corresponding computer program products and methods are also provided.