Abstract:
An interlayer composition including an epoxy resin; a polyvinyl phenol; a poly(melamine-co-formaldehyde) polymer; a solvent; an optional surfactant and an optional catalyst. A device including a substrate; an interlayer disposed thereon; and conductive features; wherein the interlayer is formed from a composition comprising an epoxy resin; a polyvinyl phenol; a poly(melamine-co-formaldehyde) polymer; an optional surfactant and an optional catalyst. A process for forming conductive features on a substrate including depositing an interlayer onto a substrate; thermally curing the interlayer; depositing a conductive composition onto the interlayer to form deposited features; and annealing the deposited features to form conductive features.
Abstract:
A method of making a sacrificial coating composition is disclosed. The method comprises emulsifying an oil with surfactant and water to form an oil-in-water emulsion; and combining ingredients comprising (i) at least one polymer, (ii) at least one hygroscopic material, (iii) the oil-in water emulsion and (iv) water to produce the sacrificial coating composition. The at least one polymer is selected from the group consisting of a hydrophilic polymer, a latex comprising polymer particles dispersed in a continuous liquid phase, or mixtures thereof.
Abstract:
An embodiment of the present disclosure is directed to a sacrificial coating composition for an image transfer member in an aqueous ink imaging system. The coating composition is made from ingredients comprising: a latex comprising polymer particles dispersed in a continuous liquid phase; at least one hygroscopic material; at least one oil-in-water emulsion; and at least one surfactant.
Abstract:
An embodiment of the present disclosure is directed to a sacrificial coating composition for an image transfer member in an aqueous ink imaging system. The coating composition is made from ingredients comprising: a latex comprising polymer particles dispersed in a continuous liquid phase; at least one hygroscopic material; at least one oil-in-water emulsion; and at least one surfactant.
Abstract:
A coating composition for an image transfer member in an aqueous ink imaging system. The coating composition includes at least one hydrophilic polymer, at least one hygroscopic material, at least one oil-in-water emulsion and at least one surfactant.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one hydrophilic polymer; at least one hygroscopic agent; at least one surfactant; at least one non-reactive silicone release agent; and water. In certain embodiments, the at least one non-reactive silicone release agent is chosen from polyether modified polysiloxane and nonreactive silicone glycol copolymers. In certain embodiments, the at least one non-reactive silicone release agent may be present in an amount ranging from about 0.001% to about 2%, based on the total weight of the composition, such as from about 0.03% to about 0.06%. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one polyvinyl alcohol; at least one waxy starch; at least one hygroscopic agent; at least one surfactant; and water, wherein the ratio by weight of the at least one waxy starch to the at least one polyvinyl alcohol is at least two to one. In certain embodiments, the at least one polyvinyl alcohol has a degree of hydrolysis of at least about 95%, such as at least about 98%, or at least about 99.3%. In certain embodiments, the viscosity of the at least one polyvinyl alcohol in a deionized water solution at 20° C. ranges from about 30 cps to about 80 cps, wherein the solution contains 4% by weight polyvinyl alcohol relative to the total weight of polyvinyl alcohol and deionized water in the solution. Also disclosed herein are methods of making a sacrificial coating composition.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one hydrophilic polymer; at least one hygroscopic agent; at least one surfactant; at least one non-reactive silicone release agent; and water. In certain embodiments, the at least one non-reactive silicone release agent is chosen from polyether modified polysiloxane and nonreactive silicone glycol copolymers. In certain embodiments, the at least one non-reactive silicone release agent may be present in an amount ranging from about 0.001% to about 2%, based on the total weight of the composition, such as from about 0.03% to about 0.06%. Also disclosed herein is a blanket material suitable for transfix printing comprising a sacrificial coating composition, as well as an indirect printing process comprising a step of applying a sacrificial coating composition to a blanket material.
Abstract:
An aqueous sacrificial coating composition for an image transfer member in an aqueous ink imaging system is provided. The sacrificial coating composition may include at least one polymer, at least one selected from (i) at least one chain extender, or (ii) a reactive elastomeric latex, wherein the at least one chain extender comprises a species capable of linking linear chains or chain segments of the reactive elastomeric latex, at least one hygroscopic plasticizer, and at least one surfactant.
Abstract:
A method of making a sacrificial coating composition is disclosed. The method comprises emulsifying an oil with surfactant to form an oil-in-water emulsion; and combining ingredients comprising (i) at least one polymer, (ii) at least one hygroscopic material, (iii) the oil-in water emulsion and (iv) water to produce the sacrificial coating composition. The at least one polymer is selected from the group consisting of a hydrophilic polymer, a latex comprising polymer particles dispersed in a continuous liquid phase, or mixtures thereof.