摘要:
An isolated rice non-endosperm tissue expression promoter, OsTSP I, and the use thereof. The promoter comprises the defined sequence of 1785 by (SEQ ID NO: 1), given in the specification, or its fragment or variant, or a nucleotide sequence If which hybridizes to SEQ ID NO: 1, or its fragment or variant, under stringent conditions. The activity of OsTSP I is comfirmed by transgenic methods. As determined histochemically, OsTSP I reglulates GUS expression in a tissue-specific manner and is not active in endosperm tissues. The OsTSP I can be used as a powerful tool for the investigation and control of gene expression in rice and other crops. It is particularly advantageous for development of safe transgenic foods such as rice.
摘要翻译:分离的水稻非胚乳组织表达启动子OsTSP I及其用途。 启动子包括在说明书中给出的(SEQ ID NO:1)所定义的序列1785或其片段或变体,或在严格条件下与SEQ ID NO:1或其片段或变体杂交的核苷酸序列 条件。 OsTSP I的活性由转基因方法证实。 按组织学方法测定,OsTSP I以组织特异性方式调节GUS表达,并且在胚乳组织中不起作用。 OsTSP可作为水稻和其他作物基因表达调查和控制的有力工具。 特别有利于开发安全的转基因食品如水稻。
摘要:
Cardiac monitoring and/or stimulation methods and systems provide monitoring, defibrillation and/or pacing therapies. A signal processor receives a plurality of composite signals associated with a plurality of sources, separates a signal using a source separation algorithm, and identifies a cardiac signal using a selected vector. The signal processor may iteratively separate signals from the plurality of composite signals until the cardiac signal is identified. The selected vector may be updated if desired or necessary. A method of signal separation involves detecting a plurality of composite signals at a plurality of locations, separating a signal using source separation, and selecting a vector that provides a cardiac signal. The separation may include a principal component analysis and/or an independent component analysis. Vectors may be selected and updated based on changes of position and/or orientation of implanted components and changes in patient parameters such as patient condition, cardiac signal-to-noise ratio, and disease progression.
摘要:
Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
摘要:
Cardiac monitoring and/or stimulation methods and systems provide for monitoring, diagnosing, defibrillation and pacing therapies, or a combination of these capabilities, including cardiac systems incorporating or cooperating with neuro-stimulating devices, drug pumps, or other therapies. Embodiments relate generally to implantable medical devices employing automated cardiac activation sequence monitoring and/or tracking for arrhythmia discrimination. Embodiments are directed to devices and methods involving sensing a plurality of composite cardiac signals using a plurality of implantable electrodes. A source separation is performed using the sensed plurality of composite cardiac signals and the separation produces one or more cardiac signal vectors associated with one or more cardiac activation sequences that is indicative of ischemia. A change of the one or more cardiac signal vectors is detected using the one or more cardiac signal vectors. Cardiac arrhythmias are discriminated using the one or more cardiac signal vectors.
摘要:
A method comprising sensing at least one cardiac signal representative of cardiac activity of a subject using an implantable medical device (IMD), calculating, from the cardiac signal, a first dominant vector corresponding to a direction and magnitude of maximum signal power of an ST-T first segment of a cardiac cycle and a second dominant vector corresponding to a direction and magnitude of maximum signal power of a P-QRS second segment of a cardiac cycle, measuring a change in the first dominant vector, measuring a change in the second dominant vector, and subtracting the change in the second dominant vector from the measured change in the first dominant vector to form a difference.
摘要:
The invention provides a process of producing hydrogen that involves aqueous phase reforming of an oxygenated hydrocarbon, preferably one obtained from a renewable source such as biomass. The reaction is carried out in the absence of electrolytes and in the presence of a dispersed particulate heterogeneous catalyst. The reaction is carried out under pressure and relatively low temperature in a stirred tank reactor, preferably a continuous stirred tank reactor.
摘要:
Systems and methods include accessing a plurality of cardiac indications. A heart rate variability metric is produced by analyzing the plurality of cardiac indications using a measurement from a class of nonlinear measurements. Nonlinear measurements include, but are not limited to, approximate entropy, X-Y scatter from a Poincaré plot, fractal dimension, and detrended fluctuation analysis, in various examples. Based on the heart rate variability metric, a cardiac ischemic state is detected.
摘要:
In a multiplexed assay method carried out in solution, wherein the solution contains nucleic acid targets and, wherein several different types of oligonucleotide probes, each type having a different sequence in a region designated as a target binding domain, are used to detect the nucleic acid targets, said assay method including a method for increasing the effective concentration of the nucleic acid targets at the surface of a bead to which the oligonucleotide probes are bound, by one or more of the following steps:adjusting assay conditions so as to increase the effective concentration of the targets available for binding to the probes, by one or more of the following: (i) selecting a particular probe density on the surface of the bead; (ii) selecting a solution having an ionic strength greater than a threshold; (ii) selecting a target domain of a size less than a threshold; or (iii) selecting target domains within a specified proximity to a terminal end of the targets.
摘要:
Systems and methods involve use of a medical device comprising sensing circuitry. One or more respiratory parameters are detected using the device. Patient baseline weight is provided, and an output signal indicative of a patient's congestive heart failure status is generated based on a change in the one or more respiratory parameters and a change in the patient's measured weight or predicted weight relative to the patient baseline weight. The respiratory parameters may include one or more of respiration rate, relative tidal volume, an index indicative of rapid shallow breathing by the patient, an index derived by computing a respiration rate and a tidal volume for each patient breath, and an index indicative of dyspnea, for example.
摘要:
The present invention relates to a delivery apparatus for delivering a self-expanding neurovascular stent that allows for smooth movement of the apparatus along a typically tortuous vascular path, ease of stent deployment, and ease of stent retractability being pushed and pulled through the delivery apparatus. The apparatus includes an outer catheter, and an inner shaft located coaxially within the outer catheter. The stent is mounted on the distal section of the inner shaft and preloaded within the outer catheter distal region. The inner shaft includes at least one stent blocking member disposed in the distal section. The self-expanding stent has proximal, middle and distal ends and is comprised of a plurality of closed cells. The self-expanding stent includes locking members which interlock with the blocking member(s) disposed on the inner shaft so as to lock the stent onto the inner shaft within the outer catheter, and to enable the stent retractable together with the inner shaft being out of and retrieved back to the outer catheter. More specially, the invention may be used in the treatment of blood vessel blockage and aneurysms which occur in the brain.