Abstract:
The present disclosure relates to methods and apparatus for graphics processing at a server and/or a client device. In some aspects, the apparatus may convert application data for at least one frame, the application data corresponding to one or more image functions or one or more data channels. The apparatus may also encode the application data for the at least one frame, the application data being associated with a data stream, the application data being encoded via a video encoding process. The apparatus may also transmit the encoded application data for the at least one frame. Additionally, the apparatus may receive application data for at least one frame, the application data being associated with a data stream. The apparatus may also decode the application data for the at least one frame; and convert the application data for the at least one frame.
Abstract:
In an example aspect, an apparatus includes a balanced power amplifier, which performs amplification in the presence of a variable antenna impedance. The balanced power amplifier includes a quadrature output power combiner coupled to a first power amplifying path and a second power amplifying path, detection circuitry, and control circuitry. The detection circuitry includes at least one power detector coupled to an isolated port of the quadrature output power combiner and a resistor coupled between the isolated port and a ground. The at least one power detector is configured to measure power at the isolated port, which is based on a resistance of the resistor. The control circuitry is configured to adjust operating conditions of a first power amplifier of the first power amplifying path and the second power amplifier of the second power amplifying path based on the power that is measured at the isolated port.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an example method may include determining to control a bit rate of a content encoder. The method may include generating a first number of shaded texture atlases for use in rendering a second number of frames by a second device based on the determination to control the bit rate of the content encoder. Each respective shaded texture atlas may include a respective plurality of shaded primitives. The method may include encoding, by the content encoder of the first device, a first shaded texture atlas of the first number of shaded texture atlases. The method may include transmitting, by the first device, the encoded first shaded texture atlas to the second device.
Abstract:
The present disclosure describes methods, apparatuses, and non-transitory computer-readable mediums for estimating a three-dimensional (“3D”) pose of an object from a two-dimensional (“2D”) input image which contains the object. Particularly, certain aspects of the disclosure are concerned with 3D pose estimation of a symmetric or nearly-symmetric object. An image or a patch of an image includes the object. A classifier is used to determine whether a rotation angle of the object in the image or the patch of the image is within a first predetermined range. In response to a determination that the rotation angle is within the first predetermined range, a mirror image of the object is determined. Two-dimensional (2D) projections of a three-dimensional (3D) bounding box of the object are determined by applying a trained regressor to the mirror image of the object in the image or the patch of the image. The 3D pose of the object is estimated based on the 2D projections.
Abstract:
The invention is a transaction interface protocol wherein the interface protocol has a transaction identifier signal in each of the request and response channels. It is used between a target network interface unit (NIU) master and an initiator NIU slave that are directly connected through a transaction interface. The target NIU response channel uses the transaction ID signal to identify the entry in a context array associated with the corresponding request. The coupling of target NIU and initiator NIU enable the formation of an on-chip interconnect comprising multiple network-on-chip (NoCs) wherein the topology of the interconnect is simpler, smaller, faster, and has lower latency.
Abstract:
Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.
Abstract:
Apparatus and methods for implementing learning by robotic devices. Attention of the robot may be manipulated by use of a spot-light device illuminating a portion of the aircraft undergoing inspection in order to indicate to inspection robot target areas requiring more detailed inspection. The robot guidance may be aided by way of an additional signal transmitted by the agent to the robot indicating that the object has been illuminated and attention switch may be required. The robot may initiate a search for the signal reflected by the illuminated area requiring its attention. Responsive to detecting the illuminated object and receipt of the additional signal, the robot may develop an association between the two events and the inspection task thereby storing a robotic context. The context of one robot may be shared with other devices in lieu of training so as to enable other devices to perform the task.
Abstract:
Apparatus and methods for an extensible robotic device with artificial intelligence and receptive to training controls. In one implementation, a modular robotic system that allows a user to fully select the architecture and capability set of their robotic device is disclosed. The user may add/remove modules as their respective functions are required/obviated. In addition, the artificial intelligence is based on a neuronal network (e.g., spiking neural network), and a behavioral control structure that allows a user to train a robotic device in manner conceptually similar to the mode in which one goes about training a domesticated animal such as a dog or cat (e.g., a positive/negative feedback training paradigm) is used. The trainable behavior control structure is based on the artificial neural network, which simulates the neural/synaptic activity of the brain of a living organism.
Abstract:
A capacitive touch panel includes sense electrodes arranged next to one another and drive electrodes arranged next to one another across the sense electrodes. The drive electrodes and the sense electrodes define a coordinate system where each coordinate location comprises a capacitor formed at a junction between one of the drive electrodes and one of the sense electrodes via mutual capacitance between the electrodes. The drive electrodes are configured to receive a first signal from a driver coupled with the drive electrodes for powering the drive electrodes to sense passive input to the capacitive touch panel at each coordinate location. Passive input can also be sensed via self-capacitance of the capacitive touch panel sensors. The drive electrodes and the sense electrodes are configured to receive a second signal from an active stylus to sense active input to the capacitive touch panel at each coordinate location.
Abstract:
Apparatus and methods for learning in response to temporally-proximate features. In one implementation, an image processing apparatus utilizes bi-modal spike timing dependent plasticity in a spiking neuron network. Based on a response by the neuron to a frame of input, the bi-modal plasticity mechanism is used to depress synaptic connections delivering the present input frame and to potentiate synaptic connections delivering previous and/or subsequent frames of input. The depression of near-contemporaneous input prevents the creation of a positive feedback loop and provides a mechanism for network response normalization.