Abstract:
The present invention relates to fabrics, composites, prepregs, laminates, and other products incorporating glass fibers formed from glass compositions. The glass fibers, in some embodiments, are incorporated into composites that can be adapted for use in high energy impact applications such as ballistic or blast resistance applications. Glass fibers formed from some embodiments of the glass compositions can have certain desirable properties that can include, for example, desirable electrical properties (e.g. low Dk) or desirable mechanical properties (e.g., specific strength).
Abstract:
A fiber-reinforced resin sheet comprising a glass fiber woven fabric impregnated with a resin composition containing vinyl chloride-based resin, wherein the glass fiber woven fabric content is 10-50 wt % with respect to the total weight of the fiber-reinforced resin sheet, the glass composing the glass fiber woven fabric comprises SiO2 and at least one of CaO and MgO as a basic composition, the SiO2, CaO and MgO contents represented by X, Y and Z (wt %) respectively with respect to the total weight of the glass are such that X−(Y+Z) is 40-60 wt %, and the fiber-reinforced resin sheet has a haze value of 40% or less.
Abstract:
Glass compositions are provided that are useful in electronic applications, e.g., as reinforcements in printed circuit board substrates. Reduced dielectric constants are provided relative to E-glass, and fiber forming properties are provided that are more commercially practical than D-glass.
Abstract:
The invention relates to glass strands especially for the production of composites having an organic and/or inorganic matrix, the composition of which strands comprises the following constituents in the limits defined below, expressed as percentages by weight: SiO250-65% Al2O312-23% SiO2 + Al2O3 >79% CaO 1-10% MgO 6-12% Li2O 1-3%, preferably 1-2% BaO + SrO 0-3% B2O3 0-3% TiO2 0-3% Na2O + K2O
Abstract:
A method for directing vessel growth toward a blood-deficient site in a mammal comprising implanting into the mammal an assembly of at glass fibers to form a vascular bridge with a first end of the vascular bridge in contact with the blood-deficient site and a second end of the vascular bridge remote from the blood-deficient site. Over time the bridge biodegrades and promotes vascularity in the direction of the bridge.
Abstract:
Glass compositions are provided that are useful in electronic applications, e.g., as reinforcements in printed circuit board substrates. Reduced dielectric constants are provided relative to E-glass, and fiber forming properties are provided that are more commercially practical than D-glass.
Abstract:
The invention relates to bioactive glasses containing or doped with strontium, to a method for preparing the same and to the use thereof in methods for bone repair or reconstruction.
Abstract:
The invention relates to glass reinforcement strands, the composition of which comprises the following constituents in the limits defined below, expressed as percentages by weight: 59 to 63% SiO2; 10 to 16% Al2O3; 16 to 23% CaO; 1 to 3.2% MgO; 0 to 2% Na2O+K2O+Li2O; 0 to 1% TiO2; 0.1 to 1.8% B2O3; 0 to 0.5% Li2O; 0 to 0.4% ZnO; 0 to 1% MnO; and 0 to 0.5% F. These strands have improved properties in terms of mechanical strength, acid resistance and high-temperature resistance for a low-cost composition. The invention also relates to a process for producing the said strands and to the composition allowing them to be produced.
Abstract:
A substantially white powder for use as a filler and/or extender derived from by-products of manufacturing vitreous low alkali, low iron glass fibers, and a method for producing the powder. The filler has very low alkalinity and by virtue of its being essentially free of crystalline silica is non-hazardous to health and therefore safe for consumer-based and industrial-based uses.
Abstract:
There is provided a feedback-controlled self-heat-monitoring fiber, including an insulator having a fiber length with at least one metal-semiconductor-metal thermal sensing element along the fiber length and disposed at a position in a cross section of the fiber for sensing changes in fiber temperature. An electronic circuit is connected to the thermal sensing element for indicating changes in fiber temperature. A controller is connected for controlling optical transmission through an optical transmission element, that is disposed along the fiber length, in response to indications of changes in fiber temperature.