Abstract:
A homogeneous catalyst system is removed from a reaction mixture of two liquid phases by separating the two liquid phases with a membrane having at least one separation-active layer in such a way that the homogeneous catalyst system is at least partially concentrated in a membrane retentate; wherein the reaction mixture contains at least one partially epoxidized cyclic unsaturated compound having twelve carbon atoms; and wherein the membrane separation-active layer contains crosslinked a silicone acrylate and/or polydimethylsiloxane and/or polyimide.
Abstract:
In a process for oxidizing a feed comprising cyclohexylbenzene, the feed is contacted with oxygen and an oxidation catalyst in a plurality of reaction zones connected in series, the contacting being conducted under conditions being effective to oxidize part of the cyclohexylbenzene in the feed to cyclohexylbenzene hydroperoxide in each reaction zone. At least one of the plurality of reaction zones has a reaction condition that is different from another of the plurality of reaction zones. The different reaction conditions may include one or more of (a) a progressively decreasing temperature and (b) a progressively increasing oxidation catalyst concentration as the feed flows from one reaction zone to subsequent reaction zones in the series.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
Compounds of the formula (I) in which A is oxygen, sulphur or NH; B is a group of the formula (IIa) or (IIb); and the other variables have the meaning given in claim 1, may be used as inhibitors of the enzyme cyclooxygenase II ##STR1##
Abstract:
The invention relates to a process for the preparation of N-substituted lactams by reaction of a lactam, which is unsubstituted on the nitrogen, with an organic halide in the presence of at least one solid-liquid phase transfer catalyst, such as a quaternary ammonium salt, and of at least one solid inorganic base, such as an alkali metal hydroxide, and in the absence of solvent. By this process, N-substituted lactams are obtained with good yields and high purity. The absence of solvent makes possible a considerable gain in productivity and an improvement in safety and in regard for the environment.
Abstract:
This invention concerns processes for preparing cyclic, five-membered ring, lactams through the carbonylation of allylic substrates in the presence of rhodium catalysts.
Abstract:
A METHOD FOR PREPARING CAPROLACTAM BY THE STEPS OF (1) NITRO-OXIDIZING CYCLOHEXENE TO 2-NITROCYCOLHEXANONE, (2) CLEAVING AND ESTERIFYING 2-NITROCYCLOHEXANONE WITH AN ALCOHOL TO FORM AN ALKYL 6-NITROHEXANOATE AND (3) CATALYTICALLY HYDROGENATING AND CYCLIZING THE NITROESTER TO CAPROLACTAM.
Abstract:
The use of certain complexes of cobalt and rhodium containing phosphine either either unsupported or supported, as catalysts for the cyclo-carbonylation reaction.