Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. incorporating a composition made of rubber in the uncrosslinked state referred to as “filling rubber”, the said cable comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a first sheathing step in which the core (C1) is sheathed with the filling rubber; a first assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named “core strand” (C1+C2); downstream of the said assembling point, a second sheathing step in which the core strand (C1+C2) is sheathed with the filling rubber; a second assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2) thus sheathed; a final twist-balancing step.
Abstract:
Metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), wherein said cord has the following characteristics (d1, d2, p1 and p2 are expressed in mm): 0.20
Abstract:
A bead cord is described including an annular core and a side wire. The side wire is helically wound around the annular core. Further, the annular core is made of a strand wire. The strand wire includes a plurality of twisted core wires. The plurality of core wires may have substantially the same diameter.
Abstract:
A heavy duty pneumatic tire has a belt disposed radially outside a carcass and radially inside a tread portion, the belt having at least one ply of at least one high-elongation steel cord, the high elongation steel cord is formed by twisting at least three waving steel filaments together to form a core and a sheath surrounding the core, the waving filaments change place repeatedly along the longitudinal direction of the cord such that one of the filaments forms the core in a portion, but in a different portion of the cord, the same filament forms part of the sheath, thereby defining a plurality of first parts with the core and a plurality of second parts without the core which are disposed alternately in the longitudinal direction of the cord, and the elongation at break of the high-elongation steel cord is in the range of from 4 to 10%, whereby the resistance to breakage of the steel belt cords is improved and it becomes possible to decrease the belt weight without deteriorating various performances.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel filaments 115 which are then stranded in case of a single layer steel cord, the uncured rubber is coated on all of plural core filaments 329 which are then stranded along with outer layer filaments 330 in the same direction at the same pitch in case of a 2-layer steel cord of 1 stranding process, and the uncured rubber is coated on all or 2 to 4 core filaments 218 or on at least one of 3 or 4 steel filaments 408, 408null to form a core strand and outer layer filaments 410, 410null are stranded therearound in case of 2-layer steel cord of 2 stranding process. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
A steel cord intended for use to reinforce rubber products is produced by drawing, into a steel filament of 0.10 to 0.40 mm in diameter and more than 3,000 N/mm.sup.2 in strength, a wire rod having a carbon content of more than 0.70% by weight, and twisting a plurality of such steel filaments together. Also a pneumatic tire is provided which employs in at least a portion of a reinforcing member thereof the steel cord improved in corrosion resistance and having an R.sub.1 /R.sub.0 ratio .times.100 which is less than 100, where R.sub.0 is the radius of spiral curvature of the spiraled steel filament resulting from untwisting said steel cord and R.sub.1 is the radius of spiral curvature of said steel filament of which the surface layer inside the spiral is removed by dissolving.
Abstract:
A steel cord intended for use to reinforce rubber products is produced by drawing, into a steel filament of 0.10 to 0.40 mm in diameter and more than 3,000 N/mm.sup.2 in strength, a wire rod having a carbon content of more than 0.70% by weight, and twisting a plurality of such steel filaments together. Also a pneumatic tire is provided which employs in at least a portion of a reinforcing member thereof the steel cord improved in corrosion resistance and having an R.sub.1 /R.sub.0 ration.times.100 which is less than 100, where R.sub.0 is the radius of spiral curvature of the spiraled steel filament resulting from untwisting said steel cord and R.sub.1 is the radius of spiral curvature of said steel filament of which the surface layer inside the spiral is removed by dissolving.
Abstract:
A tire cord and a tire, wherein the tire cord comprises three inner steel monofilaments (FC) having a smaller diameter (dc) and seven outer steel monofilaments (FB) having a larger diameter (db), both the diameters (dc) and (db) being in the range of 0.15 to 0.28 mm, the inner and outer steel monofilaments being twisted in the same direction but at different pitches, and an average gap of at least 0.03 mm is provided between the adjacent outer steel monofilaments. The tire is provided with the cords as reinforcements, e.g. carcass cords, belt cords and the like.
Abstract:
A reinforcement assembly to be impregnated with a plastic or rubber material for reinforcing an article, such as a pneumatic tire, the assembly having three layers of cords: a core layer, an intermediate layer and an outer layer. The intermediate layer and the outer layer have the same direction of winding and the same pitch. When the core layer is wound in the same direction as the intermediate layer, the pitches of these layers differ in such a manner that the ratio between the difference in the values of these two pitches and the larger value of these two pitches is at least equal to 0.30. In the intermediate layer the axis of each cord is arranged along a helix such that the ratio between the radius of curvature of said helix and the diameter of said cord is less than 75.
Abstract:
A steel cord, for use in the reinforcement of resilient articles such as rubber tires, comprises a central bundle of wires surrounded by a circumferential layer of helicoidally twisted wires. In the central bundle, one can distinguish a core and a surrounding layer, the latter having the same twist pitch as the circumferential layer. In order to reduce wire migration, the wires of the central bundle show a limited number of relative position changes, between 2 and 300 per 30 cm cord length.