Abstract:
A semiconductor integrated circuit for controlling a power switch in accordance with a control signal, which is at one of a first level and a second level for respectively turning on and off the power switch. The semiconductor integrated circuit includes a control circuit configured to receive the control signal to thereby output a reference voltage, a value of which gradually drops from a predetermined value when the received control signal remains at the first level for a predetermined time, a current sensing circuit configured to sense a current flowing through the power switch, and a drive circuit configured to receive the control signal and the reference voltage to thereby output a drive signal, the drive signal limiting the current flowing through the power switch in accordance with the reference voltage and a sense voltage corresponding to the current sensed by the current sensing circuit.
Abstract:
An igniter semiconductor device and an igniter system can prevent the influence of a voltage drop of an ON signal voltage input to an input terminal and the influence of a surge voltage, allow a switching element to operate reliably, and prevent an ignition failure. The igniter semiconductor device includes an external terminal including at least an input terminal, an output terminal electrically connected to an ignition coil, a ground terminal, and a power supply terminal electrically connected to a regulated power supply wire outside the igniter semiconductor device. The ignited semiconductor device further includes a switching element for controlling current flowing in the ignition coil, and a driving circuit that receives power through the power supply terminal and drives the switching element based on a signal input from the input terminal.
Abstract:
When an abnormality judgement section judges that there is a failure of an energy inputting circuit, an energy inputting line, through which electrical energy is inputted from the energy inputting circuit to a primary winding, is changed over to a disconnected state by output halt switching means. As a result, since inputting of electrical energy to the primary winding is thereby halted, problems arising due to continuation of inputting electrical energy to the energy inputting circuit can be prevented, even in the event of a failure of the energy inputting circuit, so that reliability can be enhanced.
Abstract:
An igniter semiconductor device and an igniter system can prevent the influence of a voltage drop of an ON signal voltage input to an input terminal and the influence of a surge voltage, allow a switching element to operate reliably, and prevent an ignition failure. The igniter semiconductor device includes an external terminal including at least an input terminal, an output terminal electrically connected to an ignition coil, a ground terminal, and a power supply terminal electrically connected to a regulated power supply wire outside the igniter semiconductor device. The ignited semiconductor device further includes a switching element for controlling current flowing in the ignition coil, and a driving circuit that receives power through the power supply terminal and drives the switching element based on a signal input from the input terminal.
Abstract:
When normal operation is detected by a self-interruption signal source and a first transistor is on, if an on-signal is inputted to an IN terminal, a second transistor is turned on and a third transistor is turned off. Accordingly, an IGBT is turned on. In this state, if an abnormality is detected by the self-interruption signal source, the second transistor is turned off and the third transistor is turned on. Accordingly, a gate terminal of the IGBT is connected to an emitter terminal via the first and third transistors, and charges accumulated by gate capacitance of the IGBT are rapidly discharged. Consequently, if a comparator detects that a collector voltage of the IGBT has exceeded a predetermined voltage, the first transistor is turned off, and a gradual interruption, in which the charges accumulated by the gate capacitance are gradually released by a resistor, is performed.
Abstract:
In an plasma generation device 30 that generates electromagnetic wave plasma by emitting electromagnetic waves to a combustion chamber 21 of an internal combustion engine 20, combustion is promoted by increasing the amount of gas to be brought into contact with the electromagnetic wave plasma in the combustion chamber 21. An antenna 36 extends along a ceiling surface of the combustion chamber 21. The antenna 36 is provided with an adjustment unit 37 that changes the location of a strong electric field on the antenna 36, which is supplied with the electromagnetic wave. During a generation period of the electromagnetic wave plasma, a control device 10 controls the adjustment unit 37 based on a condition of the combustion chamber 21 and changes the location of the electromagnetic wave plasma.
Abstract:
An ignition system of a combustion engine has a start-up adjustment curve with a maximum rotational speed, an operating adjustment curve and a switch-over device for switching between curves. The start-up adjustment curve is selected in the case of a start-up of the combustion engine. A rotational speed curve is divided into adjacent cycles. The start of the first cycle is the point in time of the second ignition after the start-up and the start of the subsequent cycles is in each case the point in time of ignition at which the rotational speed is less than in the case of the subsequent point in time of ignition. The criterion for switching to the operating adjustment curve is whether the average of the rotational speeds of successive cycles differs by less than a first tolerance value.
Abstract:
A method for operating an ignition device for an internal combustion engine, in which via a rotating magnetic pole wheel a voltage signal with a number of positive and negative half-waves is produced in at least one coil arrangement that is located on a core leg of an iron core during each rotation of the magnetic pole wheel, wherein the voltage signal is used to determine the gap width of the air gap between the magnetic pole wheel and the core leg.
Abstract:
Described is a method for detecting a glow plug replacement of an engine, wherein a first value of a temperature-dependent variable is measured at a first glow plug of the engine and, simultaneously, a second value of the temperature-dependent variable is measured at a second glow plug of the engine. The first value of the temperature-dependent variable is compared with a stored reference value of the first glow plug and a glow plug replacement is detected if the difference of the first value from the reference value exceeds a threshold value. According to this disclosure, it is provided that the reference value is a value which, in an earlier measurement, was measured at the first glow plug simultaneously with the measurement of a value at the second glow plug which corresponds to the second value within a predefined tolerance.
Abstract:
An engine system for a vessel propulsion device includes an engine including an intake amount adjusting unit and an ignition plug, and configured to generate a drive force for the vessel propulsion device. The engine system includes an ignition timing control unit, a knocking detecting unit, a knocking retard control unit that retards the ignition timing of the ignition plug by a unit retard amount when the knocking detecting unit detects knocking, an abnormality judging unit that, when a state where the knocking detecting unit detects knocking at intervals within a predetermined time continues, judges that an abnormality has occurred based on a continued state of knocking detection, and an intake amount limiting unit that limits the intake amount of the engine based on judgment of an abnormality made by the abnormality judging unit.