Abstract:
The present invention addresses the need for a liner with a hard inner surface and a machinable outer surface for use in a pump for abrasive or corrosive materials. According to one embodiment, the present invention provides technical advantages not previously seen in a corrosive or abrasive fluid pump liner comprising a cylindrical sleeve and a cylindrical shell around the sleeve, the shell comprising iron.
Abstract:
A cylinder block has a cylinder block body and a cylinder liner block mounted by casting in the cylinder block body. The cylinder liner block is formed from a material having a rigidity larger than that of the cylinder block body, and the cylinder liner block comprises a liner section mounted by casting in position in a cylinder barrel portion of the cylinder block body, and a reinforcing wall section mounting by casting in position in a bearing wall of a crank case portion of the cylinder block body in a. Thus, it is possible to increase the wear resistance of cylinders in the cylinder block, as well as to provide an increase in performance by reductions in vibration and noise of the engine including the cylinder block, and to provide reductions in size, weight and cost of the cylinder block by a reduction in thickness of the bearing walls.
Abstract:
A main bearing cap for an internal combustion engine consists of an aluminum alloy with a steel core (6). The cap has a supporting surface (2) for the bearing shell (3). The supporting surface is the outer surface of a 3 mm thick aluminum layer (10) outside the steel core.
Abstract:
A method of making a cast dual-metal monoblock, by (i) casting an iron-based insert to define walls for one or more chambers or passages for each of combustion, piston reciprocation, gaseous induction and gaseous exhaust; (ii) forming a sand core wrapping directly about said insert to cover such insert except for the extremities of the walls defining the passages for gaseous induction and exhaust and the chamber for piston reciprocation, such extremities being remote from the walls defining the combustion chamber; and (iii) die casting an aluminum-based metal jacket about the assembly of said insert and core wrapping to complete the dual-metal monoblock. Advantageously, in step (ii), there is further included the formation of a top sand core assembly for defining one or more oil and/or valve train passages or chambers, the top sand core assembly being stationed to rest on the insert during casting of the jacket.
Abstract:
The pump device includes a housing defining insertion holes for a rotation shaft, inlets and outlets, and an internal passage; a first pump element; and a second pump element. The internal passage includes first suction passages communicating from the inlet to a first suction port facing the first end surface of the first pump element directed to one end side; first discharge passages communicating from a first discharge port facing the first end surface to the outlet; second suction passages passing around the first pump element to communicate from the inlet to a second suction port facing the second end surface of the second pump element; and second discharge passages passing around the first pump element to communicate from a second discharge port facing the second end surface to the outlet.
Abstract:
An object of the invention is to provide a compressor that includes a corrosion-resistant film formed on the surface of a casing having a complicated shape. A compressor pumps gas in a compression chamber formed by a casing, the casing is made of cast iron, and a layer made of a mixture of iron nitride and a compound of iron, nitrogen, and carbon and an oxide layer made of triiron tetraoxide are formed on the surface of the casing. Accordingly, since the corrosion resistance of the casing, which includes a film formed by a gas soft-nitriding treatment and an oxidation treatment, is improved, the generation of rust is suppressed. Therefore, it is possible to provide a compressor in which galling or sticking caused by rust occurs less.
Abstract:
A refrigerant compressor includes a compression unit having a roller and a vane for compressing refrigerant. The vane has a film having first to fourth layers on its metallic base member. The first layer is made of chromium. The second layer is made of chromium and tungsten-carbide. The third layer is made of metal-containing amorphous-carbon containing at least tungsten or tungsten-carbide. The fourth layer is made of non-metal-containing amorphous-carbon containing carbon and hydrogen. In the second layer, chromium content-rate on a first-layer side is larger than on a third-layer side, and tungsten-carbide content-rate on the third-layer side is larger than on the first-layer side. In the third layer, content-rate of the at least tungsten or tungsten-carbide on a second-layer side is larger than on a fourth-layer side. The roller with which an end-edge of the vane slidably-contacts is made of flake graphite cast iron containing molybdenum, nickel and chromium.