Abstract:
A tank jacket fits over the outside of a storage tank. The jacket includes a hole for receiving the regulator assembly. The tank jacket supports a hose support assembly for storing the supply hose and a plurality of pockets for retaining various accessories and tools. A gauge protector fits over the regulator assembly and includes a first housing section defining a first cavity for receiving the regulator and a second housing section defining a second cavity for receiving the pressure gauge. A handle is formed on the gauge protector to facilitate carrying of the tank. The gauge protector and tank jacket protect the tank and regulator assembly and provide a system for transporting the tank and related equipment.
Abstract:
The invention relates to a method for filling a container with gas, gas being inserted into the container under compression. In order to be able to fill the container with a larger amount of gas than before and to reduce gas pressure peaks during filling, it is proposed according to the invention that electrically conducting stretched material is inserted into the container before it is filled with gas. Furthermore, the invention relates to a gas container (1), in particular a high-pressure gas cylinder, for storing gases under pressures exceeding 50 bar, in particular exceeding 200 bar, which contains electrically conducting stretched material (11). With gas containers (1) according to the invention, a higher filling level is achieved than before with a given pressure. Containers with a small wall thickness can be used without a safety risk because of a reduction of gas pressure peaks in the interior of containers.
Abstract:
A dry cryogenic shipping container having a removable absorbent assembly is provided. The dry cryogenic shipping container is structured to be a Dewar's flask having a first, outer shell assembly, and second, inner shell assembly disposed within and spaced from the first, outer shell assembly, and a cap. Within the shipping container is an absorbent assembly having a body with a central cavity. The absorbent assembly body is formed by a plurality of removable absorbent assembly elements. That is the absorbent assembly elements are sized to pass through the passage into the space within the shipping container. As such, after use, the absorbent assembly body elements may be removed and the remaining components may be sterilized. After sterilization, new absorbent assembly body elements are inserted into the inner space and the dry cryogenic shipping container is used again.
Abstract:
Apparatus for remote inspection of fluid containers, e.g., portable tanks, includes an electronic circuit in communication between each container (or at various locations along a pipeline) and a remote central station. The electronic circuit is adapted to issue a signal to the remote central station that includes information about predetermined internal and/or external conditions such as the level of liquid stored in the tank, a pressure condition of material stored in the tank, a lack of presence of the tank in an installed position, or the presence of an obstruction restricting access to the tank.
Abstract:
This invention relates to an integrated apparatus and method for inspection of a container adapted to hold a pressurized gas. The integrated apparatus comprises (i) an imaging device configured to obtain image data corresponding to the container and to transmit the image data to a central station, (ii) a sound detecting device configured to obtain acoustic data corresponding to the container and to transmit the acoustic data to the central station, (iii) optionally an odor detecting device configured to obtain odor data corresponding to the container contents and to transmit the odor data to the central station, (iv) wired or wireless electronic circuits in communication between each device and the central station for transmitting signals, the signals including the data, to the central station, and (v) the central station configured to receive the data transmitted by each device.
Abstract:
A compressed gas storage system includes a gas tank formed for storing therein compressed gas, a gas discharge path provided in the gas tank, a solenoid valve connected to the gas discharge path and disposed in an interior of the gas tank for controlling the flow of compressed gas that goes out of the gas tank and a control unit to which the solenoid valve is connected. An outer circumferential surface of the solenoid valve is covered with a cover, so that a space defined between the cover and the outer circumferential surface is made to communicate with the gas discharge path to thereby form a gas flow path. A heat transfer fin is formed on an inner circumferential surface of the cover in such a manner as to extend radially inwardly, so as to be brought into contact with the outer circumferential surface of the solenoid valve.
Abstract:
A valve with a smart handle including a memory module to log relevant data. A sensor on the handle determines when the valve is open, and this triggers the start of timers and recording of the “open” event in a log in the memory module. When the valve is closed, the sensor triggers stopping of the timers and recording of the “closed” event in the log. The timer information is used to calculate the duration of the time “open” event, and this, together with the actual date and time of the opening and closing of the valve are recorded in the log. Other relevant information, such as cylinder fill date, cylinder I.D. number, batch number, and patient name or account number may also be logged in the memory module. The log of the events and the corresponding dates and times may be used to prepare invoices for billing gas treatments, for inventory control, and for other record-keeping and control functions.
Abstract:
A tank jacket fits over the outside of a storage tank. The jacket includes a hole for receiving the regulator assembly. The tank jacket supports a hose support assembly for storing the supply hose and a plurality of pockets for retaining various accessories and tools. A gauge protector fits over the regulator assembly and includes a first housing section defining a first cavity for receiving the regulator and a second housing section defining a second cavity for receiving the pressure gauge. A handle is formed on the gauge protector to facilitate carrying of the tank. The gauge protector and tank jacket protect the tank and regulator assembly and provide a system for transporting the tank and related equipment.
Abstract:
A pressure vessel assembly, and method of use, for storing a gas at an elevated pressure. The assembly includes a vessel body having a rigid wall with an inner surface defining a storage chamber and with an inlet allowing the gas to enter the storage chamber. The assembly includes a flexible liner positioned within the storage chamber to be in fluid communication with the inlet to receive any fluid entering the vessel body. The liner is formed of an elastic inner layer contacting the gas and a metallic outer surface. The inflated, unrestrained liner volume is generally at least as large as the chamber volume and more typically, slightly larger. Stored gas contacts the inner surface of the liner and expands the liner from a smaller deflated volume until the outer surface of the liner contacts the wall of the pressure vessel.
Abstract:
An arrangement and associated method for moving and filling multiple storage containers with pressurized contents. The arrangement includes a movable rack for receiving the multiple containers. The rack includes ground-engaging movable members for permitting the rack and the multiple containers received thereon to be moved. The arrangement includes a fixed filling station that has a plurality of dispensing devices. Each dispensing device is engagable with a storage container to provide the pressurized contents to the containers. The rack and the filling station are arranged such that the rack is movable into proximity with the filling station and the rack is movable away from the filling station. The dispensing devices are arranged within the filling station such that each container is in proximity to a respective device when the rack and the filling station are in proximity. Also, an arrangement and method for moving and filling different types of storage containers.