Abstract:
A heating unit has a cartridge that constitutes a single component, which can be readily removed and replaced with a new cartridge. The cartridge is a plurality of non-flammable layers bound together in a border. The layers include a stainless steel mesh located above a layer of ceramic wool. With the cartridge, replacement can be accomplished in approximately fifty minutes compared to a downtime of a week or more previously.
Abstract:
A burner membrane has at least one layer consisting of a compressed, needled fiber web with a porosity of between 60% and 95%, and that is constructed of heat-resistant stainless steel fibers. A method for its manufacture includes the steps of providing a fiber web composed of heat-resistant stainless steel fibers, needling the fiber web, and compressing the needled fiber web to the desired porosity.
Abstract:
A yarn (21) comprising polymer or natural fibers (25) and one or more consolidated machined metal fiber (22) bundles is provided. The yarn is characterized in that the consolidated machined metal fiber bundles (22) are substantially surrounded by the polymer or natural fibers (25). Further the use of a textile fabric out of these yarns as a gas burner membrane is described.
Abstract:
A gas-fired infra-red burner has a dome-shaped wire mesh burner screen bulging out of the plane of the burner opening away from a plenum. This bulge or dome effect allows the screen to undergo controlled thermal expansion without any rippling, waviness or other undesirable deformation of the screen. A metal blocking plate is secured to the center of the screen and blocks the flow of gas therethrough to create a non-radiating zone at the center of the burner, thus providing even heating over the surface of the food being cooked. A plurality of creases radiate from the approximate center of the plate in a star-shaped pattern, and the plate is bent about several of the creases to give it a concave surface which contacts the screen. When heated, the creases grow in height so that the overall horizontal dimensions of the plate do not increase as much as would a flat plate. The burner venturi tube is of circular cross section adjacent its upstream end and transitions to a flattened, elliptical cross section adjacent the end where it connects to the plenum. The major axis of the elliptical cross section is parallel to the burner opening so that the depth of the plenum, and hence the overall depth of the entire burner unit, may be smaller than if the circular cross section were connected directly to the plenum.
Abstract:
A compact endothermic catalytic reaction apparatus for converting hydrocarbon feedstock and methanol to useful gases, such as hydrogen and carbon monoxide, comprising a tubular endothermic catalytic reactor, a radiant combustion chamber and an annular convection section. Thus tubular endothermic catalytic reactor receives radiant energy from a metal fiber burner that is disposed within the radiant combustion chamber. Combustion products from the radiant chamber enter an annular convection section wherein heat is transferred by forced convection to the tubular endothermic catalytic reactor. The combination of radiant and convective heat transfer results in a compact design of high thermal efficiency.
Abstract:
Formation of sintered metal fiber porous mats used as burner faces and filters comprises dispersing metal fibers in a viscous aqueous solution of one or more cellulose ethers, vacuum molding the dispersed metal fibers on a foraminous support, eliminating residual aqueous cellulose ether from the vacuum molded metal fiber porous mat, and sintering the mat. Water solutions of methylcellulose and/or hydroxypropyl methylcellulose having a viscosity of at least about 1500 centipoises are often used pursuant to this invention.
Abstract:
An apparatus for drying a moving substrate containing a multiplicity of infrared emitters and a detection emitter and a device for supplying a mixture of air and gas to these emitters. The detection emitter contains an emitter body with a diffuser for distributing a fuel-oxygen containing gas mixture, a primary radiator having a combustion surface integrally connected to the emitter body, a first detection electrode, and a second detection electrode; each of these detection electrodes sends a signal to a control means when it senses the presence of flame-induced ionization. If the control means receives a signal from one but not both of these detection electrodes, it will continue supplying the air/gas mixture to the emitters. However, only when the control means ceases receiving a signal from both of the detection electrodes will it ceases allowing the supply of the air/gas mixture to the emitters.
Abstract:
The invention relates to a gas mixing burner (80) equipped with a flame retention device (1). This device incorporates in its construction a compressed gauze of interwoven flexible metal wire or wires for said gases to flow through it, and takes the form of a ring (2), characterised in that it is constituted by a substantially coaxial stack of at least two of said rings (2). Such a device may in particular be mounted on cylindrical domestic burners.
Abstract:
A gas heating apparatus has a cylindrical outer shell disposed along a duct in which a gas to be heated flows. A pre-mixture gas supply tube is connected to the outer shell. A combustion unit including a sintered fiber mat is provided inside the outer shell with a spacing being provided between outer shell and the sintered fiber mat. The combustion unit burns the pre-mixture gas on an inner surface of the sintered fiber mat. A diffusion burner is preferably provided upstream of the outer shell and of the combustion unit to increase the heating effect. With these constructions, it is possible to obtain a smaller-sized heating apparatus which produces a higher output.
Abstract:
The disposal of troublesome substances, especially global-warming halogenated compounds is difficult enough, but is particularly difficult when associated with particulate-forming matter, such as silane and arsine commonly encountered in waste gas streams of the semiconductor industry. The combustive destruction of the troublesome substances in such a waste gas stream is simply and successfully achieved by injecting the stream admixed with fuel gas into a combustion zone surrounded by the radiant surface of a foraminous gas burner that is separately fed fuel gas and excess air sufficient to burn all the combustibles entering the combustion zone. A simple apparatus integrates the combustion zone with a quenching zone for the combustion product stream.