Abstract:
An optical structure is provided. The optical structure includes a substrate having a surface. A modified barium titanate is deposited on the surface of the substrate.
Abstract:
The present invention relates to an optical modulator capable of preventing a disconnection of an electrode and improving a discontinuity of a characteristic impedance while realizing a polarization inverting area and a ridge waveguide in a single optical modulator. In the optical modulator, a first electrode is composed of an inverting area electrode portion formed on an upper portion of one of first and second waveguides in the polarization inverting area, a non-inverting area electrode portion formed on an upper portion of the other one of the first and second waveguides in the other area, and a connection portion for making a connection between the inverting area electrode portion and the non-inverting area electrode portion at the boundary between the polarization inverting area and the other area. A supporting mechanism for supporting the connection portion of the first electrode is provided in a groove.
Abstract:
An electro-optic waveguide device, comprising (a) a first polymer buffer clad having a refractive index of about 1.445 to about 1.505 and a thickness of about 2.2 μm to about 3.2 μm; (b) a first polymer clad having a refractive index of about 1.53 to about 1.61 and a thickness of about 1.0 μm to about 3.0 μm; (c) an electro-optic polymer core having a refractive index of about 1.54 to about 1.62 and a thickness of about 1.0 μm to about 3.0 μm; and (d) a second polymer buffer clad having a refractive index of about 1.445 to about 1.505 and a thickness of about 2.2 μm to about 3.2 μm.
Abstract:
In a method of forming an array substrate for in-plane switching liquid crystal display device a first metal layer is formed on a substrate and then patterned using a first mask so as to form a gate line having a gate electrode and a common line having a plurality of common electrodes. A gate insulation layer is formed on the substrate to cover the patterned first metal layer. A semiconductor layer is formed on the gate insulation layer using a second mask, wherein the semiconductor layer includes an active layer of pure amorphous silicon and an ohmic contact layer of impurity-doped amorphous silicon. A second metal layer is formed on the gate insulation layer to cover the semiconductor layer and then patterned using a third mask to form a data line having a source electrode, a pixel connecting line having a plurality of pixel electrodes, and a drain electrode that is spaced apart from the source electrode. A channel is formed by etching a portion of the ohmic contact layer between the source and drain electrodes. An alignment layer is formed over the substrate to cover the patterned second metal layer. The substrate having the alignment layer and the source and drain electrode is then thermal-treated in a furnace to cure the alignment layer and to anneal a thin film transistor.
Abstract:
An optical waveguide device including an electro-optical crystal substrate having a top surface and a bottom surface; an optical waveguide path formed within a surface of the electro-optical crystal substrate; at least one electrode positioned above the optical waveguide path for applying an electric field to the optical waveguide path; and a silicon titanium oxynitride layer and a connecting layer for interconnecting the silicon titanium oxynitride layer to another surface of the electro-optical crystal substrate that is opposite to the surface in which the optical waveguide path is formed.
Abstract:
In a method of forming an array substrate for in-plane switching liquid crystal display device a first metal layer is formed on a substrate and then patterned using a first mask so as to form a gate line having a gate electrode and a common line having a plurality of common electrodes. A gate insulation layer is formed on the substrate to cover the patterned first metal layer. A semiconductor layer is formed on the gate insulation layer using a second mask, wherein the semiconductor layer includes an active layer of pure amorphous silicon and an ohmic contact layer of impurity-doped amorphous silicon. A second metal layer is formed on the gate insulation layer to cover the semiconductor layer and then patterned using a third mask to form a data line having a source electrode, a pixel connecting line having a plurality of pixel electrodes, and a drain electrode that is spaced apart from the source electrode. A channel is formed by etching a portion of the ohmic contact layer between the source and drain electrodes. An alignment layer is formed over the substrate to cover the patterned second metal layer. The substrate having the alignment layer and the source and drain electrode is then thermal-treated in a furnace to cure the alignment layer and to anneal a thin film transistor.
Abstract:
Electro-optic waveguide devices that comprise an electro-optic polymer core and a polymer buffer clad. The polymer buffer clad comprises an organically modified sol-gel and has a refractive index lower than the refractive index of the core.
Abstract:
An optical waveguide device including an electro-optical crystal substrate having a top surface and a bottom surface; an optical waveguide path formed within a surface of the electro-optical crystal substrate; at least one electrode positioned above the optical waveguide path for applying an electric field to the optical waveguide path; and a silicon titanium oxynitride layer and a connecting layer for interconnecting the silicon titanium oxynitride layer to another surface of the electro-optical crystal substrate that is opposite to the surface in which the optical waveguide path is formed.
Abstract:
The invention relates to apparatus and methods for suppressing high frequency resonance in an electro-optical device. The electro-optical device includes an optical waveguide formed in the upper surface of a substrate. The device further includes a plurality of electrically floating electrode segments that are positioned on the substrate to intensify an electric field in the optical waveguide. The device also includes a plurality of electrically grounded electrode segments that are positioned on the substrate for prohibiting modal conversion and propagation of high order modes in the plurality of electrically grounded electrode segments and in the plurality of electrically floating electrode segments, thereby suppressing modal coupling to the substrate. The device further includes a buffer layer formed on the upper surface of the substrate and a driving electrode formed on an upper surface of the buffer layer for receiving an RF signal that induces the electric field in the optical waveguide.
Abstract:
A method for fabricating titanium-indiffusion waveguides in optical modulators and other optical waveguide devices includes disposing titanium strips in a waveguide pattern on the surface of a crystalline substrate, such as lithium niobate or lithium tantalate, and indiffusing the titanium atoms into the crystalline substrate by pressurizing above ambient atmospheric pressure an oxygen gas atmosphere enclosing the crystalline substrate, heating in the oxygen gas atmosphere, maintaining temperature and pressure for an indiffusion period, and cooling to ambient temperature. A powder formed of the same chemical composition as the crystalline substrate may be introduced into the indiffusion process to limit the crystalline substrate from outgassing alkaline earth metal oxide during the indiffusion period. An indiffusion container that allows for crystalline substrates to be annealed in the presence of a powder without contaminating the substrate with the powder during the indiffusion process may be used. Waveguides manufactured in accordance with the method exhibit superior drift performance.