-
公开(公告)号:US20240281617A1
公开(公告)日:2024-08-22
申请号:US18649227
申请日:2024-04-29
IPC分类号: G06F40/35 , G06F16/242 , G06F16/31 , G06F16/332 , G06F16/951 , G06F40/123 , G06F40/126 , G06F40/20 , G06F40/205 , G06F40/211 , G06F40/226 , G06F40/242 , G06F40/279 , G06F40/30 , G06F40/45 , G06F40/47 , G06F40/58 , G06N3/0442 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06N3/091 , G06N5/02 , G06Q10/1053 , G06Q30/0251 , G06Q30/0601 , G10L15/08 , G10L15/16 , G10L15/18 , G10L15/22 , G10L15/26 , G10L25/63 , G16H10/60 , H04L51/02
CPC分类号: G06F40/35 , G06F16/243 , G06F16/322 , G06F16/3329 , G06F16/951 , G06F40/123 , G06F40/126 , G06F40/20 , G06F40/205 , G06F40/211 , G06F40/226 , G06F40/242 , G06F40/279 , G06F40/30 , G06F40/45 , G06F40/47 , G06F40/58 , G06N3/0442 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06N5/02 , G06Q10/1053 , G06Q30/0255 , G06Q30/0257 , G06Q30/0631 , G10L15/16 , G10L15/1815 , G10L15/22 , G10L15/26 , G10L25/63 , G16H10/60 , H04L51/02 , G06N3/091 , G10L2015/088
摘要: A computer implemented method for the automated analysis or use of data is implemented by a voice assistant. The method comprises the steps of: (a) storing in a memory a structured, machine-readable representation of data that conforms to a machine-readable language (‘machine representation’); the machine representation including representations of user speech or text input to a human/machine interface; and (b) automatically processing the machine representations to analyse the user speech or text input.
-
公开(公告)号:US20240248962A1
公开(公告)日:2024-07-25
申请号:US18157547
申请日:2023-01-20
发明人: Zeyu You , Wei Wang , Jingwei Fan
IPC分类号: G06F18/241 , G06F40/117 , G06F40/166 , G06F40/211 , G06F40/284 , G06F40/40 , H04L67/02
CPC分类号: G06F18/241 , G06F40/117 , G06F40/166 , G06F40/211 , G06F40/284 , G06F40/40 , H04L67/02
摘要: An insufficient content (IC) detection ensemble comprising a natural language model and a gradient boosting classifier detects IC in HyperText Transfer Protocol (HTTP) responses corresponding to Uniform Resource Locators (URLs). The architecture of the IC detection ensemble is such that the natural language model receives natural language tokens from body elements of HTML code in the HTTP responses as inputs, and the gradient boosting classifier receives count-based feature values and additional feature values extracted from the HTTP responses and outputs from the natural language model to generate IC/non-IC verdicts.
-
公开(公告)号:US12039545B2
公开(公告)日:2024-07-16
申请号:US18120075
申请日:2023-03-10
申请人: ASAPP, INC.
IPC分类号: H04L51/02 , G06F16/22 , G06F16/245 , G06F16/33 , G06F16/332 , G06F16/901 , G06F16/9032 , G06F16/9535 , G06F40/205 , G06F40/216 , G06F40/35 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/047 , G06N3/08 , G06N3/088 , G06N5/01 , G06N5/022 , G06Q30/016 , G10L15/26 , H04L51/52 , H04L67/02 , H04L67/306 , H04L67/53 , H04M3/42 , H04M3/51 , G06F40/211 , G06F40/40 , G06N20/10 , G06Q10/1053 , G06Q10/107 , G06Q30/01 , H04L41/04
CPC分类号: G06Q30/016 , G06F16/2237 , G06F16/245 , G06F16/3329 , G06F16/3344 , G06F16/9024 , G06F16/90332 , G06F16/9535 , G06F40/205 , G06F40/216 , G06F40/35 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/047 , G06N3/08 , G06N3/088 , G06N5/01 , G06N5/022 , G10L15/26 , H04L51/02 , H04L51/52 , H04L67/02 , H04L67/306 , H04L67/53 , H04M3/42382 , H04M3/5141 , G06F40/211 , G06F40/40 , G06N20/10 , G06Q10/1053 , G06Q10/107 , G06Q30/01 , H04L41/04 , H04M3/5183
摘要: A third-party service may be used to assist entities in responding to requests of users by determining a suggested response to a received communication. The third party service may receive a request from a first entity, such as via an application programming interface request, that includes a message in a conversation. A conversation feature vector may be computed by processing the message with a first neural network. A suggested respond to the message may be determined by processing the conversation feature vector with a second neural network. The third-party service may then return the suggested response for use in the conversation. The third-party service may similarly be used to assist other entities in responding to requests of users.
-
64.
公开(公告)号:US12039272B2
公开(公告)日:2024-07-16
申请号:US17284799
申请日:2019-10-13
发明人: Sakari Arvela
IPC分类号: G06F16/245 , G06F16/31 , G06F16/35 , G06F40/211 , G06F40/284 , G06N3/08 , G06N20/00 , G06Q50/18
CPC分类号: G06F40/284 , G06F16/322 , G06F16/355 , G06F40/211 , G06N3/08 , G06N20/00 , G06Q50/184 , G06F2216/11
摘要: The invention provides a method and system for training a machine learning-based patent search or novelty evaluation system. The method comprises providing a plurality of patent documents each having a computer-identifiable claim block and specification block, the specification block including at least part of the description of the patent document. The method also comprises providing a machine learning model and training the machine learning model using a training data set comprising data from said patent documents for forming a trained machine learning model. According to the invention, the training comprises using pairs of claim blocks and specification blocks originating from the same patent document as training cases of said training data set.
-
公开(公告)号:US12032613B2
公开(公告)日:2024-07-09
申请号:US17373294
申请日:2021-07-12
申请人: BASF SE
IPC分类号: G06F16/33 , G06F16/31 , G06F40/211 , G06F40/30 , G06N5/04
CPC分类号: G06F16/3344 , G06F16/316 , G06F40/211 , G06F40/30 , G06N5/04
摘要: In order to facilitate a search and identification of documents, an information retrieval system is provided for performing a search on a corpus of data objects. The information retrieval system comprises a device and a database. The database is configured to store at least one syntactic search index data structure and at least one semantic search index data structure. The syntactic search index data structure is configured to index and store in the database a plurality of terms from the corpus of data objects along with syntactic annotations indicating syntactic information. The at least one semantic search index data structure is configured to index and store in the database the plurality of terms from the corpus of data objects along with semantic annotations indicating semantic information. The device comprises an input unit, a processing unit, and an output unit. The input unit is configured to receive a syntactic query and a semantic query. The processing unit is configured to match the syntactic query against the syntactic search index data structure to obtain a first set of data objects, each of which has a set of terms that are syntactically related to the syntactic query. The processing is configured to match the semantic query against The at least one semantic search index data structure to obtain second set of the data objects, each of which has a set of terms that are semantically related to the semantic query, wherein the second set of data objects is a sub-set of the first set of the data objects. The output unit is configured to output information of the second set of data objects.
-
公开(公告)号:US12026360B1
公开(公告)日:2024-07-02
申请号:US18370614
申请日:2023-09-20
申请人: AlphaSense Oy
IPC分类号: G06F3/0484 , G06F3/0482 , G06F16/332 , G06F40/30 , G06N20/00 , G06F40/117 , G06F40/211 , G06F40/253
CPC分类号: G06F3/0484 , G06F3/0482 , G06F16/3323 , G06F16/3328 , G06F40/30 , G06N20/00 , G06F40/117 , G06F40/211 , G06F40/253
摘要: A method for rendering context based information on a user interface includes receiving a user request to extract the context based information from a database. The database includes a plurality of documents and the request includes at least one search criteria required to determine a context of the user request. The method includes generating a list of documents corresponding to the context of the user request and rendering on a viewing portion of the user interface the list of documents corresponding to the context of the user request.
-
公开(公告)号:US20240211778A1
公开(公告)日:2024-06-27
申请号:US18601867
申请日:2024-03-11
申请人: SAP SE
发明人: Susan Marie Thomas
IPC分类号: G06N5/022 , G06F11/34 , G06F16/901 , G06F40/211 , G06F40/284 , G06F40/295 , G06N20/00
CPC分类号: G06N5/022 , G06F11/3476 , G06F16/9027 , G06F40/211 , G06F40/284 , G06F40/295 , G06N20/00
摘要: Automated event monitoring is performed utilizing a Knowledge Graph (KG) constructed by grouping and consolidation of a variety of log Entry Types. A log entry is received by a knowledge graph parser (Kg parser). That parser finds contiguous sub-strings in a log entry that have a parameterized basic-format. The parser figures out which basic-formats are present, where, and with which parameters. Given a sub-string, its basic-format and its parameters, the parser can correctly parse the sub-string to components (e.g., keys and values if a key-value format; fields if a structured format). A result of the parsing is an entity type tree structure. Next, a grouping and consolidation capability functions to modify the KG to incorporate an incoming new entry type structure. The KG may be consumed by a user (e.g., visualization; querying), and may provide an artifact to an event monitoring system to automatically trigger certain actions (e.g., alerts).
-
公开(公告)号:US11983493B2
公开(公告)日:2024-05-14
申请号:US17339933
申请日:2021-06-04
发明人: Jinchao Zhang , Fandong Meng , Jie Zhou
IPC分类号: G06F40/253 , G06F18/214 , G06F40/211 , G06F40/247 , G06N3/08
CPC分类号: G06F40/253 , G06F18/214 , G06F40/211 , G06F40/247 , G06N3/08
摘要: A data processing method includes: obtaining a to-be-detected text, and determining a context word set and a candidate substitute word set corresponding to a to-be-detected word in the to-be-detected text to be inputted into a pronoun resolution neural network for feature extraction; performing positive-example iteration processing and negative-example iteration processing on the features corresponding to the context word set and the candidate substitute word set, to obtain a positive-example feature vector length and a negative-example feature vector length, and calculating a substitute probability corresponding to each candidate substitute word in the candidate substitute word set according to the positive-example feature vector length and the negative-example feature vector length; determining a target substitute word according to the substitute probability corresponding to the each candidate substitute word; and inserting the target substitute word into the to-be-detected text according to a position corresponding to the to-be-detected word, to obtain a target text.
-
公开(公告)号:US20240143938A1
公开(公告)日:2024-05-02
申请号:US18409965
申请日:2024-01-11
IPC分类号: G06F40/35 , G06F16/242 , G06F16/31 , G06F16/332 , G06F16/951 , G06F40/123 , G06F40/126 , G06F40/20 , G06F40/205 , G06F40/211 , G06F40/226 , G06F40/242 , G06F40/279 , G06F40/30 , G06F40/45 , G06F40/47 , G06F40/58 , G06N3/0442 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06N5/02 , G06Q10/1053 , G06Q30/0251 , G06Q30/0601 , G10L15/16 , G10L15/18 , G10L15/22 , G10L15/26 , G10L25/63 , G16H10/60 , H04L51/02
CPC分类号: G06F40/35 , G06F16/243 , G06F16/322 , G06F16/3329 , G06F16/951 , G06F40/123 , G06F40/126 , G06F40/20 , G06F40/205 , G06F40/211 , G06F40/226 , G06F40/242 , G06F40/279 , G06F40/30 , G06F40/45 , G06F40/47 , G06F40/58 , G06N3/0442 , G06N3/0455 , G06N3/0499 , G06N3/08 , G06N5/02 , G06Q10/1053 , G06Q30/0255 , G06Q30/0631 , G10L15/16 , G10L15/1815 , G10L15/22 , G10L15/26 , G10L25/63 , G16H10/60 , H04L51/02 , G06N3/091
摘要: A computer implemented method for the automated analysis or use of data is implemented by a voice assistant. The method comprises the steps of (a) storing in a memory a structured, machine-readable representation of data that conforms to a machine-readable language (‘machine representation’); the machine representation including representations of user speech or text input to a human/machine interface; and (b) automatically processing the machine representations to analyse the user speech or text input.
-
公开(公告)号:US11972215B2
公开(公告)日:2024-04-30
申请号:US16950289
申请日:2020-11-17
发明人: Kevin J McNamara , Eugene Mariotti
IPC分类号: G06F40/30 , G06F40/211 , G06N20/00 , G06Q30/016
CPC分类号: G06F40/30 , G06F40/211 , G06N20/00 , G06Q30/016
摘要: A method for providing automated support services by utilizing artificial intelligence is disclosed. The method includes receiving, via a graphical user interface, a request from a user; parsing, by using syntax analysis, the request; identifying, from the parsed request, a factor by using a model such as a machine learning model, the factor including a request context and a request sentiment; associating the request with a category corresponding to the factor; determining, by using the model, whether the request can be automatically resolved based on the factor and the category; and initiating at least one action based on a result of the determining.
-
-
-
-
-
-
-
-
-