Abstract:
Provided is a plasma display panel (PDP) in which terminals of discharge electrodes are stably disposed. The PDP includes: first and second substrates facing each other and separated by a predetermined distance; a first group of barrier ribs interposed between the first and second substrates, and defining a plurality of discharge cells; pairs of discharge electrodes, each including: a discharge unit arranged in the first group of barrier ribs and causing a discharge; a terminal which is disposed outside the first group of barrier ribs; and a connector which connects the discharge unit and the terminal; and a support element which supports a portion of at least one connector exposed to the outside of the first group of barrier ribs.
Abstract:
A plasma display panel and manufacturing process therefor, providing an improved barrier rib strength in an opposing discharge structure. The plasma display panel may include a front substrate and a rear substrate, address electrodes extending in a predetermined direction on the rear substrate, and a barrier rib layer disposed between the front and rear substrates for defining a plurality of discharge spaces. The barrier rib layer includes barrier rib members for defining the plurality of discharge spaces, and display electrodes forming opposing electrodes with the discharge spaces therebetween, with grooves formed in a direction crossing the address electrodes on the barrier rib members facing the front substrate, and inner surfaces of the grooves that are coated with display electrodes.
Abstract:
A PDP having an opposing electrode structure including first and second substrates facing each other. A space between the first and second substrates is divided into discharge cells. Address electrodes extend in a first direction between the first and second substrates, and first and second electrodes extend in a second direction intersecting the first direction while being spaced apart from the address electrodes. At least one of the address electrodes or the first and second electrodes has a protruding portion that protrudes toward the center of each discharge cell. The protruding portions help reduce the discharge gap which in turn reduces the discharge firing voltage. Expansion portions formed as parts of the first and second electrodes increase the discharge gap used by the sustain discharge and lead to an improved luminescence efficiency.
Abstract:
A Plasma Display Panel (PDP) includes a plurality of substrates, dielectric walls, X-electrodes, Y-electrodes, and red, green, and blue phosphor layers. The substrates include front and rear substrates disposed opposite each other. The dielectric walls are disposed between the front and rear substrates to define discharge cells along with the substrates. Each of the X-electrodes includes first and second X-electrodes, separately disposed along a circumference of the discharge cell, and buried in the dielectric wall. Each of the Y-electrodes includes first and second Y-electrodes, separately disposed along the circumference of the discharge cell, and buried in the dielectric wall. Red, green, and blue phosphor layers are coated in the discharge cells. At least one of the X- and Y-electrodes, which starts a main discharge, has a different area from the other electrodes.
Abstract:
A plasma display panel capable of being fast driven with low voltage by reducing a distance between an address electrode and a Y electrode. The plasma display panel includes a pair of substrates, discharge electrodes, and an address electrode. The substrates are arranged at a predetermined interval to face each other and form a plurality of discharge spaces between facing surfaces of the substrates. The discharge electrodes are arranged at predetermined intervals between the substrates. The address electrode is arranged a predetermined distance apart from the discharge electrodes in a direction where the substrates are arranged, and defines each of the discharge spaces in cooperation with the discharge electrodes.
Abstract:
A novel design for a plasma display panel where a dielectric grid structure is formed between the front and the rear substrate. Some or all of the electrodes are formed within the dielectric grid structure. The electrodes surround individual discharge cells and thus produce a more efficient discharge. A resistive element is built into the electrodes to reduce current and to reduce power consumption. The sustain discharge electrodes, made of X and Y electrodes each are made of at least two separate electrode lines, all four electrodes being formed within the dielectric grid. By such a design, power consumption is reduced and light emission efficiency is improved.
Abstract:
A plasma display panel and a method of fabricating the same are disclosed. In one embodiment, the plasma display panel includes i) a front substrate, ii) a rear substrate disposed to face the front substrate, iii) a dielectric wall disposed between the front and rear substrates to define discharge cells with the front and rear substrates, and having portions of different heights from each other, iv) a pair of sustain discharge electrodes including an X electrode and a Y electrode, embedded in the dielectric wall, and disposed to surround a discharge corner of the discharge cell, v) an address electrode embedded in the dielectric wall and disposed in a direction of crossing the Y electrode, and vi) red, green, and blue phosphor layers applied in the discharge cells. In one embodiment, a predetermined gap is formed between the front substrate and the dielectric wall due to a height difference between the portions of the dielectric wall where the address electrode is formed and is not formed, respectively. Accordingly, an exhaustion of impure gas can be performed sufficiently, and thus, the impure gas can be reduced and a discharge smear at the center portion of the panel can be removed.
Abstract:
A high efficiency plasma display panel (PDP) has a discharge cell structure in which front discharge electrodes and rear discharge electrodes are optimally positioned to maximize discharge efficiency and greatly increase light transmittance. The PDP includes: a transparent front substrate; a rear substrate arranged in parallel with the front substrate; front barrier ribs made of a dielectric material and located between the front substrate and the rear substrate so as to define discharge cells together with the front substrate and the rear substrate; front discharge electrodes located in the front barrier ribs such that they surround the discharge cells and are separated from the front substrate; rear discharge electrodes located in the front barrier ribs such that they surround the discharge cells and are separated from the front discharge electrodes; rear barrier ribs located between the front barrier ribs and the rear substrate so as to define the discharge cells together with the front barrier ribs, the front substrate and the rear substrate; fluorescent layers located in spaces defined by the rear barrier ribs and the rear substrate; and a discharge gas deposited in the discharge cells.
Abstract:
A plasma display panel includes a substrate which includes first and second substrates disposed facing each other, a plurality of discharge electrodes disposed along a circumference of a discharge cell formed between the first and second substrates, a dielectric wall which buries the discharge electrodes, and a secondary electron emission amplifying unit which emits the secondary electrons into the discharge space and which is formed on at least a portion of a surface which contacts plasma generated in the discharge space during a discharge. The discharge voltage can be reduced due to an increase in the emission of the secondary electrons.
Abstract:
An electrode sheet for a plasma display panel and a plasma display panel utilizing the same. The electrode sheet for the plasma display panel includes: a dielectric layer having a first surface and a second surface and including a discharge hole for providing a side wall of a discharge space, the dielectric layer being composed of metal oxide (MxOy); and a discharge electrode including a discharge unit around a perimeter of the discharge hole and a connection unit for connecting the discharge unit and another discharge unit to each other, the discharge electrode being within the dielectric layer and composed of metal (M) of the metal oxide (MxOy). Here, the discharge unit of the discharge electrode is within the dielectric layer such that the first surface of the dielectric layer has an area differing from that of the second surface of the dielectric layer.
Abstract translation:一种用于等离子体显示面板的电极片和使用其的等离子体显示面板。 用于等离子体显示面板的电极板包括:介电层,具有第一表面和第二表面,并且包括用于提供放电空间的侧壁的放电孔,所述电介质层由金属氧化物(M x O y)构成; 以及包括排出孔周围的排出单元的放电电极和用于将放电单元和另一个放电单元彼此连接的连接单元,放电电极位于电介质层内并由金属(M)构成 氧化物(MxOy)。 这里,放电电极的放电单元在电介质层内,使得电介质层的第一表面具有与电介质层的第二表面不同的面积。