摘要:
The invention disclosed herein is directed toward a novel structural design for a PEM fuel cell, as well as a novel method of creating an anode and a cathode via a sputtering technique. This invention can be used with hydrogen or direct methanol fuel cells. The geometry, discussed more fully above, allows a design engineer to construct a compact fuel cell useful in portable devices requiring battery power. In addition to facilitating connecting multiple fuel cells together in a layer, the design of this invention allows for the creation of fuel cell stacks. The sputtering disclosed herein is comprised of sputtering thin film catalysts onto ribbed surfaces, thereby creating anodes and cathodes. In order for a high effective surface area for the fuel and oxidant and their respective reactions to be created, a porous catalyst could be used. In addition, the thickness of the catalysts can be chosen in such a way as to support electron conduction and, therefore, to allow the catalyst and the surface upon which it was sputtered to act as an anode and a cathode.
摘要:
Stacking porous and non-porous material layers involves applying vacuum to a first porous layer to stabilize same relative to a support structure. The support structure and/or a non-porous layer are moved to establish contact between the non-porous layer and the first porous layer. The first porous and non-porous layers define a sub-assembly. While applying vacuum to the sub-assembly, one or both of the support structure and a second layer are moved to establish contact between the second layer and the non-porous layer. Vacuum applied to the sub-assembly maintains positional stability of the sub-assembly layers relative to the support structure while the second layer is moved into contact with the non-porous layer. Vacuum is subsequently removed to facilitate transporting of the material layer stack. Material layers of a fuel cell, including first and second fluid transport layers and a membrane, are well suited for automated stacking.
摘要:
A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.
摘要:
A fuel cell includes a membrane electrode assembly, a first plate separator and a second plate separator on opposite sides of the membrane electrode assembly and a voltage sensor for detecting a cell voltage relative to opposite sides of the membrane electrode assembly. A transmitter is coupled to the sensor and configured to wirelessly transmit an indication of the cell voltage.
摘要:
A fuel cell system with planar manifold having at least one fuel cell assembly with a first side and a second side; a plurality of anodes on the first side; a plurality of cathodes on the second side; ion-conducting electrolyte between the first and second sides; a fluid manifold assembly fluidly connected to the first side. In the planar manifold a first barrier layer provides at least one inlet port in fluid communication with a hydrogen source, and at least one outlet port to remove any unreacted hydrogen and byproducts from the first side; a plurality of conduit layers, on at least one of which is disposed one or more channels fluidly connected to the at least one inlet port and one of which is fluidly connected to the at least one outlet port; and, a second barrier layer disposed above the plurality of conduit layers containing a plurality of perforations affixed to the first side to supply hydrogen gas.
摘要:
Composite members, a fuel cell and manufacturing method, where the composite members are mounted on a base and comprise a first insulator and a second insulator layered on either side of an interconnector, exposed in a chamfered portion on opposite corners. Between a pair of the composite members is formed an electrolyte film. An anode is formed so as to cover the anode surface of the electrolyte film and an anode-side protrusion. The anode formed at the top of anode-side protrusion is stripped, forming a flat exposed surface on the top of the anode-side protrusion. A cathode is formed so as to cover the cathode surface of the electrolyte film and a cathode-side protrusion. The cathode formed on the top of the cathode-side protrusion is stripped using a spatula, a blade, etc., forming a flat exposed surface on the top of the cathode-side protrusion.
摘要:
A device includes a case having a surface with a perforation and a first cavity containing a gas generating fuel. A first membrane is supported by the case inside the first cavity. The first membrane has an impermeable valve plate positioned proximate the perforation. The first membrane is water vapor permeable and gas impermeable and flexes responsive to a difference in pressure between the cavity and outside the cavity to selectively allow water vapor to pass through the perforation to the fuel as a function of the difference in pressure. A second membrane that is water vapor permeable gas impermeable is coupled between an outside of the case exposed to ambient atmospheric gas and the valve plate creating a reference pressure second cavity configured to reduce the effects of ambient pressure transients on the difference in pressure. A fuel cell membrane may be included in the device to produce electricity.
摘要:
A stack for an electrical energy accumulator is provided having at least one storage cell, which in turn has a storage electrode and an air electrode that is connected to an air supply device, the air supply device having an air distribution plate, wherein the stack also has a water vapor supply device which is in contact with the storage electrode and the air distribution plate has at least one element of the water vapor supply device.
摘要:
Provided are a fuel cell making it possible to make contact pressures high between its electrode layers and its metallic layers and others, thereby improving the power of the cell, and a method for manufacturing the cell. A fuel cell of the invention comprises a solid polymer electrolyte layer (1), first and second electrode layers (2, 3) located on each of both sides of the solid polymer electrolyte layer (1), and first and second electroconductive layers (4, 5) arranged outside the first and second electrode layers (2, 3), respectively, the individual layers (1 to 5) being integrated with each other through a resin molded body (6) which is an insert-molded body.
摘要:
An automated roll to roll method of making a fuel cell roll good subassembly is described wherein an elongated first subgasket web having a plurality of apertures is moved relative to a plurality of individual electrolyte membranes, each individual electrolyte membrane having a center region. The individual electrolyte membranes are aligned with the first subgasket web so that a center region of each electrolyte membrane is aligned with an aperture of the first subgasket web and the individual electrolyte membranes are attached to the first subgasket web.