摘要:
A communication device, such as a smart phone, includes logic to determine a noise power estimate. In an example, a frequency domain calculation may be used to determine noise components within the noise power estimate. Further, a product of a channel estimate and equalizer effect may be used in the determination of the levels noise components, such as, inter-symbol interference power and neighbor cell interference power.
摘要:
The invention concerns a filter bank receiver (FBMC) effecting a carrier frequency offset compensation in the frequency domain. The receiver comprises an FFT module extended by the overlap factor (610), a module (630) offsetting a predetermined number of subcarriers at the output of the FFT followed by a filter for reducing interference between subcarriers (640), the number of subcarriers and the coefficients of the interference reduction filter being determined from an estimation () of the frequency offset. The vector of samples thus obtained is then the subject of channel equalisation (650) before being filtered by a battery of analysis filters and spectrally de-spread (660). Finally, after spectral de-spreading, the vector of samples is demodulated by an OQAM demodulation (670) so as to recover the transmitted data.
摘要:
A receiver may be operable to receive an inter-symbol correlated (ISC) signal, and generate a plurality of soft decisions as to information carried in the ISC signal. The soft decisions may be generated using a reduced-state sequence estimation (RSSE) process. The RSSE process may be such that the number of symbol survivors retained after each iteration of the RSSE process is less than the maximum likelihood state space. The plurality of soft decisions may comprise a plurality of log likelihood ratios (LLRs). Each of the plurality of LLRs may correspond to a respective one of a plurality of subwords of a forward error correction (FEC) codeword.
摘要:
A system may comprise a symbol mapper circuit that outputs C′ quadrature amplitude modulation (QAM) symbols per orthogonal frequency division multiplexing (OFDM) symbol. The system may also comprise circuitry operable to process said C′ QAM symbols using a circulant matrix to generate a particular OFDM symbol consisting of C+Δ subcarriers, where C′ is a first integer, C is a second integer less than C′, and Δ is an integer equal to the number of non-data-carrying subcarriers in the particular OFDM symbol. The circulant matrix may be a P×P matrix, where P is an integer less than C′. The system may comprise a nonlinear circuit that introduces nonlinear distortion to said particular OFDM symbol.
摘要:
To improve a quality of a combined signal obtained by maximum ratio combining performed when a transmission signal of OFDM system is diversity-received with a small computation amount or a small circuit size. In a receiving apparatus, a combining unit corrects, when combining a sub-carrier signal of each branch obtained by performing Fourier transform on a reception signal of each branch at a maximum ratio for each sub-carrier, a weighting coefficient of each branch according to a magnitude relation of an intensity of the reception signal of each branch before Fourier transform. Specifically, the combining unit corrects the weighting coefficient of each branch so as to weaken an influence of a transmission path response estimated for a sub-carrier signal of the branch in branches with smaller reception signal intensities.
摘要:
Methods and apparatus are described for processing data in a wireless communication network. Iterative estimation techniques are used to enable tracking of time-varying communication channels. A signal is transmitted over a channel in the network, the signal comprising a sequence of symbols carried on a plurality of sub-carriers. Boot-up estimator estimates, in a time domain, parameters of a model of the channel based on the received signal. A domain converter transforms at least one of the estimated parameters from the time domain to provide at least one transformed parameter in a second domain. An equalizer and decoder determine estimates of symbols from the received signal using the at least one transformed parameter, and tracking estimator updates the estimated model parameters during reception of the signal using at least one estimated symbol.
摘要:
This invention concerns soft-decision demapping of Quadrature Amplitude Modulation (QAM) signals to enable soft-decision channel decoding in a communications system. In a first aspect the invention is a method for performing the soft-decision demapping of Quadrature Amplitude Modulation (QAM) signals to enable soft-decision channel decoding in a communications system. The method comprises the steps of Extracting baseband signals from both I-and-Q channels. Sampling the baseband signals to extract a stream of complex numbers. Converting the stream of complex numbers to frequency domain vectors with components for each subcarrier frequency. Approximating bit log-likelihood ratios for each symbol directly from the real and imaginary parts of the corresponding frequency vector, without equalization by the estimated channel. And, soft-decoding of the channel codes using the approximated log-likelihood ratios. In other aspects the invention concerns a device for performing the method and software for performing the method.
摘要:
This equalization device and method, while preventing an expansion of circuit size, enable high-speed detection of a CIR in order to effectively achieve frequency domain equalization even when the phase of the received signal is significantly different from the phase of the known signal, and when the transmission channel has large temporal variations. A reference signal extraction unit (112) extracts both a real part component and an imaginary part component from the portion of the received signal including the known signal. A CIR detection filter unit (120) filters the known signal to generate a first processed signal and a second processed signal, detects real part filter coefficients by updating a first filter coefficient used in filtering the known signal in such a way that the first processed signal converges to the real part component, and detects imaginary part filter coefficients by filtering the known signal in such a way that the second processed signal converges to the imaginary part component. A CIR output unit (140) uses either the real part filter coefficients or the imaginary part filter coefficients to identify the channel impulse response.
摘要:
A technique for equalizing a distributed pilot OFDM signal with decision feedback involves correlating a received OFDM signal against a pilot reference to obtain a coarse channel estimate, where the received OFDM signal includes a distributed pilot signal and an OFDM data signal. The received OFDM signal is equalized based on the coarse channel estimate and the distributed pilot signal is removed to generate a coarse data signal estimate. The coarse data signal estimate is removed from the received OFDM signal using the coarse channel estimate to generate a residual pilot signal. The residual pilot signal can then be correlated against the pilot reference to obtain a fine channel estimate. The received OFDM signal is equalized based on the fine channel estimate, and the distributed pilot signal is removed to produce a fine data signal estimate from which data is recoverable.
摘要:
In order to solve a problem of achieving distortion compensation with high accuracy, a digital filter device includes a first distortion compensation filter unit for conducting distortion compensation of first waveform distortion included in an inputted signal through digital signal processing, a first filter coefficient setting unit for setting a filter coefficient of the first distortion compensation filter unit, a second distortion compensation filter unit for compensating second waveform distortion included in a signal outputted from the first distortion compensation filter unit, and a second filter coefficient setting unit for setting a filter coefficient of the second distortion compensation filter unit based on the filter coefficient set by the first filter coefficient setting unit.