Abstract:
A method produces ε-caprolactam through adipamide as an intermediate, and characteristically includes a lactamization step of reacting adipamide, formed from a material compound, with hydrogen and ammonia in the presence of a catalyst containing: a metal oxide mainly containing an oxide(s) of one or more metallic elements selected from the group consisting of metallic elements of group 5 and groups 7 to 14 in the 4th to 6th periods of the periodic table; and a metal and/or a metal compound having a hydrogenation ability.
Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
The present invention relates to novel methods for preparing cis-alkoxy-substituted spirocyclic 1-H-pyrrolidine-2,4-dione derivatives and also to novel intermediates and starting compounds, which are passed through or used in the method according to the invention.
Abstract:
The present invention is a method of producing ε-caprolactam through adipamide as an intermediate, and characteristically includes a lactamization step of reacting adipamide, formed from a material compound, with hydrogen and ammonia in the presence of a catalyst containing: a metal oxide mainly containing an oxide(s) of one or more metallic elements selected from the group consisting of metallic elements of group 5 and groups 7 to 14 in the 4th to 6th periods of the periodic table; and a metal and/or a metal compound having a hydrogenation ability. The method can increase the selectivity of ε-caprolactam.
Abstract:
A method of producing ε-caprolactam from 3-oxoadipic acid includes: step 1 of mixing at least one selected from the group consisting of 3-oxoadipic acid and salts thereof with a catalyst and a solvent in the presence of hydrogen to produce 3-hydroxyadipic acid; and step 2 of reacting the 3-hydroxyadipic acid which is a product of step 1, a salt or carboxylic acid derivative thereof, or a mixture of these with hydrogen and ammonia.