Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A multiple path delay time searcher at a signal demodulation mode of a reverse link communication channel of a mobile communication system employing a code division multiple access method. The multiple path delay time searcher includes a sample buffer for storing a signal received from an antenna of a base station as a sample; a delay time searcher for obtaining a correlation value between a signal at a specific search location designated by the sample buffer and a reference signal corresponding to a specific symbol; a signal processor for deciding whether there is a signal component in the specific search location using an accumulative average of the correlation values received from the delay time searcher; and a multiple path combiner for deciding the symbol designated in the delay time searcher.
Abstract:
A sliding correlator is disclosed for establishing initial synchronization to spectrum-despread a received signal into a narrow band signal in a radio receiver in a spread spectrum CDMA system. The a sliding correlator can achieve high speed synchronization. A received signal is stored in a memory circuit (43). The received signal is read from the memory circuit (43) at a frequency substantially higher than the storing rate of the received signal. The read received signal is multiplied by a replica of a spreading code sequence by means of a multiplier (45), and the output signal of the multiplier (45) is accumulated by an accumulator (46) over a predetermined time period. The output of the accumulator (46) is decided by a threshold detector (47) whether or not it exceeds a predetermined threshold. When the output of the threshold detector (47) is less than the threshold, the phase of the spreading code sequence is shifted, and the detection is repeated. Since the correlation is taken by reading the received signal from the memory circuit (43) at a high speed, the initial synchronization can be established quickly.
Abstract:
A parallel packetized intermodule arbitrated high speed control data bus system which allows high speed communications between microprocessor modules in a more complex digital processing environment. The system features a simplified hardware architecture featuring fast FIFO queuing operating at 12.5 MHz, TTL CMOS compatible level clocking signals, single bus master arbitration, synchronous clocking, DMA, and unique module addressing for multiprocessor systems. The system includes a parallel data bus with sharing bus masters residing on each processing module decreeing the communication and data transfer protocols. Bus arbitration is performed over a dedicated serial arbitration line and each requesting module competes for access to the parallel data bus by placing the address of the requesting module on the arbitration line and monitoring the arbitration line for collisions.
Abstract:
Methods for generating code sequences that have rapid acquisition properties and apparatus which implement the methods by processing spreading codes on in-phase and quadrature channels. A first method combines two or more short codes to produce a long code. This method may use many types of code sequences, one or more of which are rapid acquisition sequences of length L that have average acquisition phase searches r=log2L. Two or more separate code sequences are transmitted over the complex channels. If the sequences have different phases, an acquisition may be done by acquisition circuits in parallel over the different code sequences when the relative phase shift between the two or more code channels is known. When the received length L codes or the length L correlation codes used to find the phase of the received codes have a mutual phase delay of L/2, the average number of tests to find the code phase of the received code is L/4. The codes sent on each channel may be the same code, with the code phase in one channel being delayed with respect to the other channel, or they may be different code sequences.
Abstract:
A receiver of a direct spread spectrum communication system with a window filter implemented to provide a portion of a correlation signal to a window peak detector while the complete correlation signal is being provided to a peak detector. The receiver demodulates data received in the spread spectrum signal by determining phase position information in response to peak detection signals generated by the peak detector and the window peak detector.
Abstract:
An impulse radio transceiver for full duplex ultrawide-band communications. The transceiver comprises an impulse radio transmitter to transmit impulse radio signal pulses, an impulse radio receiver to receive impulse radio signal pulses. Either or both of the impulse radio transmitter and the impulse radio receiver, synchronizes the transmission and the reception of the impulse radio signal pulses for pulse interleaved communications. Pulse interleaving avoids self-interference between the transmitted impulse radio signal pulses and the received impulse radio signal pulses. In addition to pulse interleaved communications, bursts of pulses can be transmitted between two transceivers in an interleaved fashion. Alternatively, two different pulse repetition rates are be used to transmit and receive impulse radio signal pulses simultaneously. Still further, selected pulses of the received or transmitted impulse radio signal pulses are blanked to avoid interference.
Abstract:
In a CDMA communication network, each base station (BS) is made to establish synchronism between a downward transmission signal directed to a mobile station (MS) and an upward reception signal received from the mobile station by adjusting in the mobile station a mobile generated SS pattern into an adjusted SS pattern of producing an upward transmission signal for reception at the base station as the upward reception signal. In order to get the adjusted SS pattern, the base station inserts in the downward transmission signal an inserted signal representative of a propagation delay t(D) between the base and the mobile stations and a propagation delay increment t(d) while the mobile station is in a prelminary state of receiving the downward transmission signal as a downward reception signal first from the base station and is in a steady state, respectively. The signals may ba propagated through at least one communication satellite. Preferably, each mobile station comprises a delay circuit (53) for synchronizing the adjusted SS pattern with an adjusted time, which is equal to t(B)-t(D) and to t(B)-t(d) in the preliminary and the steady states, where t(B) represents a base station absolute time at which a base generated SS pattern is generated for downward transmission signals directed to mobile stations covered by the base station.
Abstract:
In a spectrum spread receiver, a tracking unit tracks successive regions covering maximum correlation values, respectively, in spectrum spread demodulated components to produce a timing signal indicative of synchronous points respectively in the regions. Responsive to the timing signal, a differential demodulator unit demodulates the spectrum spread demodulated components at each synchronous point and at a time which is always one symbol period later than this synchronous point. Differential demodulation is carried out in this manner so as to be faithfully inverse relative to differential modulation in a spectrum spread transmitter.
Abstract:
A multi-level correlation technique and apparatus for detecting symbol and data frame synchronization in high noise and multi-path environments, wherein received signals are correlated with known pseudorandom noise (PN) or other known codes at the base level and the base level correlation results are in turn correlated with PN or other known codes at the next higher level, such that the top level of correlation includes all lower levels of encoding in the complete synchronization pattern. In a two level implementation, the base level codes define symbols while the top level code defines the synchronization pattern in terms of the base level symbols. Correlation hardware is minimized while processing gain is maximized for enhancing low signal to noise levels over a long synchronization pattern. Additionally, precise ranging is facilitated because the top level correlation result covers the entire synchronization pattern.