Abstract:
Disclosed is a conjugate for gene transfer, which is capable of being used for treatment of incurable diseases, comprising an oligonucleotide intended to be transferred into target cells and a hydrophilic polymer, wherein an end of the oligonucleotide is covalently conjugated to the hydrophilic polymer. Also, the present invention discloses polyelectrolyte complex micelles formed from such a conjugate and a cationic polymer or cationic peptide. Such polyelectrolyte complex micelles can effectively transfer oligonucleotides as therapeutic agents into target cells, making it possible to obtain desired activities of the delivered oligonucleotides in target cells even when the micelles are clinically applied at a relatively low concentration. Therefore, the conjugate and the polyelectrolyte complex micelle are very useful in basic life science research and the medical field.
Abstract:
An apparatus for capturing a radiation image of a subject including at least two materials includes a radiation irradiating unit configured to irradiate multi-energy radiation including at least two energy bands to a calibration model including a plurality of thicknesses of each of the at least two materials; an attenuation-coefficient estimating unit configured to estimate attenuation coefficients for each of the at least two materials for each of the at least two energy bands based on values obtained by passing the multi-energy radiation through the calibration model; and an energy-band determining unit configured to determine an optimal combination of at least two energy bands to be included in multi-energy radiation to be irradiated to the subject from a plurality of different combinations of at least two energy bands based on the estimated attenuation coefficients and the values obtained by passing the multi-energy radiation through the calibration model.
Abstract:
Disclosed herein is a method of remarkably improving the memory characteristics of a non-volatile memory device and the device reliability of the MOSFET using graphene which is a novel material that has a high work function and does not cause the deterioration of a lower insulating film.
Abstract:
The present invention relates to an apparatus for rejecting images in a receiver.The apparatus of the present invention relates to an apparatus for rejecting image signals in a receiver of a direct conversion structure and comprises a signal mismatch compensation unit configured to detect gain error and phase error between an In-phase (I) signal and a Quadrature (Q) signal received through the receiver, to reject image signals existing in the I and Q signals, and to output a result. The signal mismatch compensation unit detects the gain error and the phase error using an adaptive step method of reducing the step size of the gain error and the phase error step by step whenever the gain error and the phase error are converged.According to the present invention, high image rejection ratio is achieved and the adaptation time taken to obtain a high image rejection ratio is reduced simultaneously. Further, a bad influence of the DC offset on the image rejection ratio can be prevented by removing DC offset signals in a digital structure, accordingly, error can be accurately estimated.
Abstract:
The present invention relates to an algorithm that retrieves only k data elements having the largest (or smallest) key values from a dataset (i.e., top-k results) in a time linearly proportional to the size of the dataset. The proposed method using the algorithm finds the top-k results using a k-sized min (or max) heap structure that maintains candidate elements of the top-k results by scanning all data elements in the dataset only once. In other words, the present invention provides a linear-time top-k sort method that finds top-k results in a time linearly proportional to the size of the dataset (i.e., O(n) time complexity), while conventional sort algorithms for finding top-k results cannot find the top-k results in a time linearly proportional to the size of the dataset (i.e., at least O(n log n) time complexity).
Abstract:
The present invention relates to an algorithm that retrieves only k data elements having the largest (or smallest) key values from a dataset (i.e., top-k results) in a time linearly proportional to the size of the dataset. The proposed method using the algorithm finds the top-k results using a k-sized min (or max) heap structure that maintains candidate elements of the top-k results by scanning all data elements in the dataset only once. In other words, the present invention provides a linear-time top-k sort method that finds top-k results in a time linearly proportional to the size of the dataset (i.e., O(n) time complexity), while conventional sort algorithms for finding top-k results cannot find the top-k results in a time linearly proportional to the size of the dataset (i.e., at least O(n log n) time complexity).
Abstract:
A super miniature X-ray tube using the nano material field emitter includes a tip-tip-type cathode electrode having the nano material field emitter formed on one end with a planar section thereof to generate an electron beam, a gate electrode formed in a hollow cylindrical shape and surrounding an outer circumference of the cathode electrode, the gate electrode having a tapered portion formed on one end and inclined from inside to outside, the gate electrode receiving a voltage for generating the electron beam, a high voltage insulating portion formed in a hollow cylindrical shape and surrounding an outer circumference of the gate electrode, a anode electrode formed at a predetermined distance from one end of the high voltage insulating portion and receiving an acceleration voltage to accelerate an electron beam generated at the cathode electrode, and an electric field adjusting electrode formed between the high voltage insulating portion and the anode electrode to vary a pattern of an acceleration electric field, wherein the cathode electrode includes an open portion formed on one side to receive therein the electric field adjusting electrode, and an X-ray generating portion formed on the other side to generate an X-ray by a collision of an accelerated electron beam.
Abstract:
An apparatus for separating target molecules includes a plurality of protruding portions on a first sidewall of a fluid channel to control a flow of a fluid containing the target molecules, and a fluid channel portion having a variable height for separating the target molecules depending on sizes of the target molecules.
Abstract:
The present invention relates, in general, to a system for analyzing tissue perfusion using the concentration of indocyanine green and a method of measuring the perfusion rate using the system and, more particularly, to a system for measuring tissue perfusion by injecting indocyanine green into a living body, detecting variation in the concentration of indocyanine green with the passage of time, and analyzing the detected variation, and a method of measuring the perfusion rate using the system. The present invention provides a method of measuring perfusion in a living body, which enables accurate measurement for respective regions in a wide range from a perfusion rate decreased to less than 10% of normal perfusion to a perfusion rate increased to greater than normal perfusion using the above-described mechanism of ICG in a living body, which cannot be conducted using the conventional technology.