Abstract:
An energy storage unit connection information acquiring apparatus that acquires information for connecting a plurality of energy storage units in parallel, each energy storage unit including one or more energy storage elements connected in series, the connection information acquiring apparatus including: a connectable range acquiring unit that acquires a connectable range by determining the connectable range that is a range of energy storage units that can be connected in parallel among the plurality of energy storage units; and a charge/discharge information acquiring unit that acquires information for charging or discharging a connected energy storage unit group such that at least one energy storage unit outside the connectable range can be connected in parallel to the connected energy storage unit group that is composed of the energy storage units in the connectable range that are connected in parallel.
Abstract:
An electric storage device includes: an electrode assembly in which electrodes are wound such that paired curved portions and a straight portion connecting the paired curved portions are formed; a case which houses the electrode assembly, the case comprising a convex part protruding toward the straight portion of the electrode assembly to support the straight portion; and a support portion which supports the curved portion toward an inside of the electrode assembly.
Abstract:
In a self-diagnostic processing performed by a CPU, whether a vehicle is in an idle stop state is determined based on obtained vehicle operation information and engine operation information in order to perform abnormality detection processing. When an engine has stopped in a vehicle equipped with an idle stop function, electric power is supplied to electrical components of the vehicle, which means a battery supplies currents to the electrical components. Consequently, if a current measurement result obtained by measuring a current while the vehicle is stationary and an ignition is ON indicates that the measurement value is equal to or below a prescribed current value, the CPU determines that an abnormality has occurred in a measuring system.
Abstract:
An alkaline storage battery includes a positive electrode, a negative electrode containing, as an active material, at least one of a metal capable of forming dendrites and a metal compound thereof, and an alkaline electrolyte solution, wherein a compound having a primary amino group and having no carboxyl group is contained in the alkaline electrolyte solution in an amount greater than or equal to 7% by volume.
Abstract:
A method for equalizing states of electric storage devices, which are connected in series, of an electric storage device assembly, includes preparing discharging time period data including discharging time periods associated with sequential numbers, determining whether a voltage of each electric storage device has reached a reference voltage during charging or discharging of the electric storage device assembly, and discharging the electric storage devices, using a discharging circuit, for respective discharging time periods associated with the sequential numbers, the sequential numbers being assigned to the electric storage devices according to a sequence of the electric storage devices determined based on time points at which the voltages of the electric storage devices have reached the reference voltage.
Abstract:
A battery deterioration determination device includes a temperature sensor that detects a temperature of a battery; and a determination unit that determines whether the battery has deteriorated or not, wherein the determination unit executes a different deterioration determination process between a first case where the temperature detected by the temperature sensor is less than a predetermined temperature and a second case where the temperature detected by the temperature sensor is equal to or higher than a predetermined temperature.
Abstract:
An energy storage apparatus includes: at least one energy storage device which includes an electrode assembly and a case for housing the electrode assembly; a spacer which is arranged adjacent to the case; and a holder which holds the energy storage device and the spacer. The energy storage device includes an insulating film which covers an outer surface of the case and is adhered to at least a portion of the outer surface of the case. The spacer has at least one of edges and corners thereof disposed at positions where the edges or the corners are in contact with the outer surface of the case with the insulating film interposed therebetween.
Abstract:
An energy storage apparatus includes: an energy storage device; a bus bar; and a lead line, wherein the bus bar includes a bus bar body which is in contact with the external terminal of the energy storage device and includes a portion to be connected where the lead line is connected to the bus bar, and other portion which is contiguously formed with the portion to be connected, and the bus bar body has a cut disposed between the portion to be connected and the other portion.
Abstract:
The present invention maintains a power generating element in a flat shape as far as possible to thereby improve workability in a manufacturing process. In a battery including a power generating element formed into a flat shape and housed in a container, the power generating element formed by winding a foil-shaped positive electrode plate 24a and a foil-shaped negative electrode plate 24b, with separator 25 sandwiched therebetween, about a winding core 21 having flexibility, a thin-plate-shaped member TP having higher rigidity than the winding core is attached to at least one of opposite end portions in a direction of a winding axis of the
Abstract:
Provided is an energy storage apparatus which includes: an energy storage device; and a first spacer and a second spacer that sandwich the electric storage device, wherein each of the spacers includes: a passage forming portion that forms a passage for passing cooling air in a second direction that is perpendicular to a first direction in which the energy storage device and the spacers are arranged; and a passage blocking portion disposed at one end in the second direction, and wherein, in a view along a third direction perpendicular to the first and second directions, the passage blocking portion of one of the spacers and the passage blocking portion of the other of the spacers overlap.