Abstract:
The present invention relates to a wireless communication system. In detail, the invention relates to a method for a terminal to transmit a UCI in a carrier aggregation-based wireless communication system, and to an apparatus therefor, wherein the method involves the steps of: forming a first cell group having a PCell; forming a second cell group having one or more SCells; receiving one or more data in the second cell group; and transmitting HARQ-ACK information on the one or more data through a PUCCH, wherein, when the first and second cell groups are managed by an identical base station, the HARQ-ACK information is transmitted in the PCell, and, when the first and second cell groups are managed by different base stations, the HARQ-ACK information is transmitted in the second cell group.
Abstract:
A method of a user equipment for performing TDD (Time Division Duplex) operation in a wireless communication system is discussed. The method according to one embodiment includes receiving RRC (radio resource control) signaling indicating whether or not a TDD subframe is being reconfigured; monitoring a PDCCH (Physical Downlink Control Chanel) related with reconfiguring the TDD subframe, if the RRC signaling indicates the TDD subframe is being reconfigured; and performing a TDD operation based on the PDCCH for the reconfiguring the TDD subframe, depending on whether a TDD uplink-downlink configuration indicates the TDD subframe is configured as a special subframe or not.
Abstract:
A method and a communication apparatus for transmitting uplink control information in a wireless communication system; and a method and a communication apparatus for receiving uplink control information in a wireless communication system are discussed. The method according to an embodiment includes identifying a Hybrid Automatic Repeat reQuest-Acknowledgement (HARQ-ACK)(0), HARQ-ACK(1) and HARQ-ACK(2); and transmitting bits b(0)b(1) using a Physical Uplink Control Channel (PUCCH) resource based on the HARQ-ACK (0), the HARQ-ACK(1) and the HARQ-ACK(2), according to a relation including Table 1. The HARQ-ACK(0) and the HARQ-ACK(1) indicate Acknowledgement (ACK)/Negative ACK (ACK/NACK)/Discontinuous Transmission (DTX) responses to data blocks related to a first cell, the HARQ-ACK(2) indicates ACK/NACK/DTX response to a data block related to a second cell, n(1)PUCCH,0 indicates a PUCCH resource linked to a Physical Downlink Control Channel (PDCCH) on the first cell, and n(1)PUCCH,2 indicates a PUCCH resource linked to a PDCCH on the second cell.
Abstract:
A method for and apparatus for performing a measurement in a wireless communication system is provided. A wireless device determines information about a measurement type, the measurement type indicating one of a first measurement object and a second measurement object and performs measurement using a measurement signal at subframe(s) configured in the measurement object indicated by the measurement type. The measurement signal includes one of a discovery signal, a measurement reference signal (MRS) and a cell-common RS (CRS).
Abstract:
A method and apparatus for transmitting ACK/NACK information in a wireless communication system are disclosed. In accordance with a method for transmitting ACK/NACK information, an ACK/NACK signal of downlink transmission in a downlink subframe set is transmitted in a single uplink subframe. In this case, if a first physical uplink control channel (PUCCH) format is established by a higher layer for a downlink receiver, and if one physical downlink shared channel (PDSCH) is transmitted in a downlink subframe set, the ACK/NACK information can be transmitted using a second PUCCH format on PUCCH resources established by a higher layer for the second PUCCH format.
Abstract:
A method and device for monitoring a control channel in a wireless communication system are provided. In particular, in consideration of multiple carrier aggregation, indication information is provided which includes information on a cell for monitoring a downlink control channel and information on a channel type defined to identify whether a downlink control channel to be transmitted from a corresponding cell is a legacy PDCCH (LPDCCH) or an enhanced PDCCH (EPDCCH). The indication information may be set in consideration of whether to arrange cross carrier scheduling. Thus, a terminal uses the indication information to adaptively monitor LPDCCH and/or EPDCCH through a predetermined search section of a corresponding cell. Thus, it is possible to adaptively schedule a downlink control channel and an enhanced downlink control channel.
Abstract:
The present invention relates to a wireless communication system, and more specifically, disclosed are a method and an apparatus for transmitting or receiving a downlink signal by considering an antenna port relationship. A method for user equipment receiving a physical downlink shared channel (PDSCH) signal in the wireless communication system, according to one embodiment of the present invention, comprises the steps of: determining a start symbol index of the PDSCH from a downlink subframe; and receiving the PDSCH signal based on the start symbol index, wherein the PDSCH can be scheduled by means of downlink control information (DCI) which is received through a physical downlink control channel (PDCCH) or an enhanced PDCCH (EPDCCH). When the DCI is comprised according to DCI format 1A, which is transmitted through the EPDDCH, and the downlink subframe is a non-multicast broadcast single frequency network (MBSFN) subframe, the start symbol index can be determined depending on an EPDCCH start symbol value which is established by an upper layer.
Abstract:
The present invention relates to various methods for performing quasi co-location (QCL) and apparatuses supporting the same. As an embodiment of the present invention, a method for performing quasi co-location (QCL) for a new carrier type (NCT) by a terminal in a wireless access system may include the steps of: receiving a higher layer signal including a QCL reference CRS information parameter indicating CRS information of a reference carrier; receiving a physical downlink control channel (PDCCH) signal including a PDSCH remapping and quasi co-location indicator (PQI) field; receiving a CSI-RS of a QCLed NCT and a CRS of a reference carrier on the basis of a PQI field and a QCL reference CRS information parameter; and performing frequency tracking of the NCT and the reference carrier on the basis of the CSI-RS of the NCT and the CRS of the reference carrier.
Abstract:
A method for receiving a downlink signal by user equipment in a wireless communication system that supports coordinated multiple-point transmission and reception (CoMP) according to one embodiment of the present invention includes receiving information regarding two candidate demodulation reference signal (DMRS) groups for generating a sequence of downlink demodulation reference signals; and generating a sequence of downlink demodulation reference signals using one of at least two candidate DMRS configuration parameter sets. Each of at least two candidate DMRS configuration parameter sets includes a cell identifier and a scrambling identifier. The scrambling identifier included in one of at least two candidate DMRS configuration parameter sets may be determined whether the two cell identifiers included respectively in at least two candidate DMRS configuration parameter sets are the same or not.
Abstract:
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method for transmitting an uplink signal in the wireless communication system supporting carrier aggregation (CA), and to the apparatus for same, the method comprising the steps of: setting a scheduling cell, which has a first uplink-downlink (UL-DL) configuration, and setting a scheduled cell, which has a second TDD UL-DL configuration; and carrying out a HARQ process from the scheduled cell based on the number of HARQ processes for the scheduled cell.