摘要:
The present disclosure relates to systems and methods that provide power generation using predominantly CO2 as a working fluid. In particular, the present disclosure provides for the use of a portion of the heat of compression from a CO2 compressor as the additive heating necessary to increase the overall efficiency of a power production system and method.
摘要:
The present disclosure relates to a launch system, a launch vehicle for use with the launch system, and methods of launching a payload utilizing the launch vehicle and/or the launch system. The disclosure can provide for delivery of the payload at a terrestrial location, an Earth orbital location, or an extraorbital location. The launch vehicle can comprise a payload, a propellant tank, an electrical heater wherein propellant, such as a light gas (e.g., hydrogen) is electrically heated to significantly high temperatures, an exhaust nozzle from which the heated propellant expands to provide an exhaust velocity of, for example, 7-16 km/sec, and sliding electrical contacts in electrical connection with the electrical heater. The launch vehicle can be utilized with the launch system, which can further comprise a launch tube formed of concentric electrically conductive tubes, as well as an electrical energy source, such as a battery bank and associated inductor.
摘要:
The present disclosure relates to systems and methods that provide a low pressure liquid CO2 stream. In particular, the present disclosure provides systems and methods wherein a high pressure CO2 stream, such as a recycle CO2 stream from a power production process using predominately CO2 as a working fluid, can be divided such that a portion thereof can be expanded and used as a cooling stream in a heat exchanger to cool the remaining portion of the high pressure CO2 stream, which can then be expanded to form a low pressure CO2 stream, which may be in a mixed form with CO2 vapor. The systems and methods can be utilized to provide net CO2 from combustion in a liquid form that is easily transportable.
摘要:
The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
摘要:
Plate assemblies configured for use in heat exchangers are provided. The plate assemblies may include one or more plates defining an inlet end, an outlet end, and flow channels configured to receive a flow of fluid from the inlet end and direct the fluid to the outlet end. The flow channels may be defined by protrusions, grooves, and/or orifices defined in flow plates, and spacer plates may separate the plate assemblies from one another. The flow channels may be interconnected such that for each of a plurality of intermediate positions along the flow channels, a plurality of flow paths are defined. Thus, in an instance in which a blockage occurs in one of the flow channels, flow may be prevented through only a portion of the flow channel.
摘要:
A method of power production using a high pressure/low pressure ratio Brayton Power cycle with predominantly N2 mixed with CO2 and H2O combustion products as the working fluid is provided. The high pressure can be in the range 80 bar to 500 bar. The pressure ratio can be in the range 1.5 to 10. The natural gas fuel can be burned in a first high pressure combustor with a near stoichiometric quantity of pressurized preheated air and the net combustion gas can be mixed with a heated high pressure recycle N2+CO2+H2O stream which moderates the mixed gas temperature to the value required for the maximum inlet temperature to a first power turbine producing shaft power.
摘要:
The present disclosure provides an integrated power generating system and method and liquefied natural gas (LNG) vaporization system and method. More particularly, heat from a CO2 containing stream from the power generating system and method can be used to heat the LNG for re-gasification as gaseous CO2 from CO2 containing stream is liquefied. The liquefied CO2 can be captured and/or recycled back to a combustor in the power generating system and method.
摘要:
The present disclosure relates to systems and methods that provide power generation using predominantly CO2 as a working fluid. In particular, the present disclosure provides for particular configurations for startup of a power generation system whereby the combustor may be ignited before the turbine is functioning at a sufficiently high speed to drive the compressor on a common shaft to conditions whereby a recycle CO2 stream may be provided to the combustor at a sufficient flow volume and flow pressure. In some embodiments, a bypass line may be utilized to provide additional oxidant in place of the recycle CO2 stream.
摘要:
A method of power production using a high pressure/low pressure ratio Brayton Power cycle with predominantly N2 mixed with CO2 and H2O combustion products as the working fluid is provided. The high pressure can be in the range 80 bar to 500 bar. The pressure ratio can be in the range 1.5 to 10. The natural gas fuel can be burned in a first high pressure combustor with a near stoichiometric quantity of pressurized preheated air and the net combustion gas can be mixed with a heated high pressure recycle N2+CO2+H2O stream which moderates the mixed gas temperature to the value required for the maximum inlet temperature to a first power turbine producing shaft power.
摘要翻译:提供了一种使用高压/低压比Brayton动力循环的主要N2混合作为工作流体的CO 2和H 2 O燃烧产物的发电方法。 高压可以在80 bar到500 bar的范围内。 压力比可以在1.5至10的范围内。天然气燃料可以在具有近化学计量的加压预热空气的第一高压燃烧器中燃烧,并且净燃烧气体可以与加热的高压循环N2 + CO 2 + H 2 O流,其将混合气体温度调节到产生轴功率的第一动力涡轮机的最大入口温度所需的值。
摘要:
A combustor apparatus is provided, comprising a mixing arrangement for mixing a carbonaceous fuel with enriched oxygen and a working fluid to form a fuel mixture. A combustion chamber is at least partially defined by a porous perimetric transpiration member, at least partially surrounded by a pressure containment member. The combustion chamber has longitudinally spaced apart inlet and outlet portions. The fuel mixture is received by the inlet portion for combustion within the combustion chamber at a combustion temperature to form a combustion product. The combustion chamber directs the combustion product longitudinally toward the outlet portion. The transpiration member is configured to substantially uniformly direct a transpiration substance therethrough toward the combustion chamber, such that the transpiration substance is directed to flow helically about the perimeter and longitudinally between the inlet and outlet portions, for buffering interaction between the combustion product and the transpiration member. Associated systems are also provided.