摘要:
An impedance-matched amplifier utilizing a feed-forward linearization technique involving multiple negative feedbacks and distortion compensation without active tail current sources reduces noise, distortion, power consumption and heat dissipation requirements and increases linearity, dynamic range, signal-to-noise-ratio, sensitivity and quality of service. Some differential amplifier embodiments of the invention consume less than 2 mA at 5 Volts or 10 mW power consumption per 1 mW in peak and sustained output IP3 performance above 40 dBm. In contrast, for an input signal frequency of 200 MHz, a 16 dB gain state-of-the-art differential amplifier consumes 100 mA at 5 Volts with a peak output IP3 of 36 dBm while an implementation of a 16 dB gain differential amplifier embodying the invention consumes 77.7 mA at 5 Volts with a peak output IP3 of 46 dBm and sustained at or above 40 dBm over a wide frequency range.
摘要:
Microelectromechanical resonators include a resonator body with a built-in piezoelectric-based varactor diode. This built-in varactor diode supports passive frequency tuning by enabling low-power manipulation of the stiffness of a piezoelectric layer, in response to controlling charge build-up therein at resonance. A resonator may include a composite stack of a bottom electrode, a piezoelectric layer on the bottom electrode and at least one top electrode on the piezoelectric layer. The piezoelectric layer includes a built-in varactor diode, which is defined by at least two regions having different concentrations of electrically active dopants therein.
摘要:
A CORDIC engine includes an N-stage CORDIC processor for performing N micro-iterations of a CORDIC algorithm and generating a 3-vector CORDIC output responsive to a 3-vector CORDIC input. A counter counts a number of M macro-iterations for the CORDIC algorithm and indicates a start of the cycle iterations. A multiplexer selects an input to the N-stage CORDIC processor as the 3-vector CORDIC input at the start of the cycle iterations or the 3-vector CORDIC output at other times. The CORDIC algorithm is complete after N*M clock cycles by generating N micro-iterations for each of the M macro-iterations. In some embodiments, the CORDIC engine is coupled to programmable logic blocks as part of a programmable logic array.
摘要:
Power control systems and power control devices may include a power control chip having a power control module configured to generate a power stage control signal, and at least one power stage having a timing control module that is physically separate from the power control module. The timing control module may be configured to receive the power stage control signal and generate a timing control signal controlling at least one switch to regulate an output voltage of the at least one power stage. A related method may include generating power stage control information indicating an offset between an output voltage and a desired regulated output voltage, transmitting the power stage control information between modules that are physically separate, and timing signals for controlling a switching converter to regulate the output voltage. A related method of auto-configuring a power control system is also disclosed.
摘要:
Systems and methods are disclosed for performing data conversion by matching current sources using a thin oxide device; and minimizing voltage stress on the thin oxide device during operation or power down.
摘要:
A single replica current is proportional to current through a main switch of a switching power converter. This replica current may be used for current compensation, detection and response to an overload, detection and response to a super-overload, and combinations thereof. An input voltage is switchably coupled to an output signal generating a load current responsive to a switch control. A replica switch generates a replica current proportional to the load current. A ramp modulation signal may be generated. A voltage ramp of the ramp modulation signal may be adjusted in response to the replica current. A feedback difference signal is compared to the ramp modulation signal to generate a comparison output. Comparison of an overload reference voltage to a replica voltage proportional to the replica current generates an overload signal. The switch control is generated responsive to the comparison output and may be modified responsive to the overload signal.
摘要:
A high-speed switch that includes a switch fabric, and both high-speed serial ports and data converter physical ports. A first set of data converter physical ports may perform analog-to-digital conversions, such that an external analog signal may be converted to a digital input signal on the switch. The converted digital input signal may then be routed through the switch fabric in accordance with a serial data protocol. A second set of data converter physical ports may perform digital-to-analog conversions, such that an internal digital signal received from the switch fabric may be converted to an analog output signal on the switch. The converted analog output signal may then be transmitted to an external destination in accordance with a serial data protocol.
摘要:
Soft start circuits for a switching power converter include an amplifier configured to operate from a common bias node and amplify a difference between a positive input and a negative input to generate an amplifier output. A soft start bias circuit supplies a soft start bias current during a soft start process for the switching power converter. An operational bias circuit supplies an operational bias current after the soft start process. In some embodiments, a capacitor is operably coupled to the amplifier output and is configured to provide a frequency compensation for the switching power converter and a charging ramp for the soft start process. In some embodiments, the soft start circuit is configured such that the soft start bias current is at least an order of magnitude smaller than the operational bias current and limits a current that the amplifier can during the soft start process.
摘要:
An inductive wireless power transfer system comprises a transmitter configured to generate an electromagnetic field to a coupling region in response to an input signal. The inductive wireless power transfer control logic is configured to determine an input power of the input signal. The control logic is configured to determine a presence of a foreign object within the coupling region in response to a comparison of the input power and an output power of an output signal of a receiver within the coupling region. Related inductive wireless power transfer systems and methods for detecting a foreign object in an inductive wireless power transfer coupling region of an inductive wireless power transfer system are disclosed.