Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including an organic layer that includes the following heterocyclic compound: wherein R1 to R13 are each independently a hydrogen atom, a heavy hydrogen atom, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C3-C60 cycloalkyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C5-C60 aryloxy group, a substituted or unsubstituted C5-C60 arylthio group, a substituted or unsubstituted C5-C60 aryl group, an amino group substituted with a C5-C60 aryl group or a C3-C60 heteroaryl group, a substituted or unsubstituted C3-C60 heteroaryl group, a substituted or unsubstituted C6-C60 condensed polycyclic group, a halogen atom, a cyano group, a nitro group, a hydroxy group, or a carboxy group.
Abstract:
An organic light emitting diode (OLED) display includes: a substrate; a first electrode on the substrate; a first emission layer on the first electrode; a second emission layer on the first emission layer; a second electrode on the second emission layer; and a light emitting assistance layer selectively positioned between the first emission layer and the second emission layer.
Abstract:
An organic light-emitting device including a substrate, an anode layer on the substrate, the anode layer including WOxNy (2.2≦x≦2.6 and 0.22≦y≦0.26), an emission structure layer on the anode layer, and a cathode layer on the emission structure layer.
Abstract:
Embodiments of the invention may be directed to a continuous analog phase shifter for radio frequency (RF) signals, which can be integrated on a CMOS process or another compatible process where inherent process-dependent passive components such as inductors and capacitors may have low quality factors. Insertion loss degradation for a given amount of phase shift may be compensated by using an active compensation circuit/device that smartly controls negative resistance generated from the compensation circuit/device to cancel out finite resistance of a network, leading to very small insertion loss variation. According to an example aspect of the invention, improved phase linearity and increased phase shift for a given size may be obtained by incorporating the compensation circuit/device. Thus, example analog phase shifters in accordance with example embodiments of the invention may have one or more of low insertion loss variation, small size, and good phase linearity over more than a 360 degree phase shift.
Abstract:
A novel fluorene-containing compound and an organic electroluminescent device including an organic layer employing the same. The fluorene-containing compound has excellent electrical characteristics and an excellent charge transporting capability, and so can be used as a hole injecting material, hole transporting material, and/or emitting material that is suitable for all-color fluorescent and phosphorescent devices, such as red, green, blue, and white fluorescent and phosphorescent devices. Accordingly, an organic electroluminescent device employing the fluorene-containing compound has high efficiency, a low driving voltage, high brightness, and a long lifetime.
Abstract:
A front side emitting type organic light-emitting display device includes a substrate; an anode electrode formed over the substrate; an organic layer formed over the anode electrode; a cathode electrode formed over the organic layer; a pair of transparent conductive oxide layers disposed over the cathode electrode; and a metal layer interposed between the pair of transparent conductive oxide layers.
Abstract:
Systems and methods may include a low-dropout (LDO) voltage regulator for portable communication devices. The systems and methods may include a comparator having first and second inputs and generating a control voltage, the first input receiving a battery voltage from a battery source, the second input receiving a fixed voltage independent from the battery voltage, and a power management circuit that receives the control voltage and provides a regulated voltage based upon the control voltage, wherein when the received battery voltage is above the fixed voltage, the control voltage is provided at a high constant voltage, thereby resulting in the regulated voltage being at a first voltage, and wherein when the battery voltage is below the fixed voltage, the control voltage is provided at a low constant voltage, thereby resulting in the regulated voltage being at a second voltage less than the first voltage.
Abstract:
Systems and methods for provided for linearization systems and methods for variable attenuators. The variable attenuators can include series transistors along a main signal path from the input to output, as well as shunt transistors. A bootstrapping body bias circuit can be used with one or of the series transistors to allow the body of a connected transistor to swing responsive to a received RF input signal. As the RF signal increases and affects the gate-to-source voltage difference of a transistor, a bootstrapping body bias circuit can adaptively adjust the threshold voltage of the connected transistor and compensate the channel resistance variation resulting from gate-to-source voltage swing. The bootstrapping body bias circuit can be implemented using passive elements, active elements, or a combination thereof.
Abstract:
A power amplifier system can include a plurality of driver amplifiers and a plurality of power amplifiers, where each driver amplifier and power amplifier includes at least one respective input port and at least one respective output port. The power amplifier system also includes a shared inductive device that provides common interstage matching between the respective output ports of the plurality of driver amplifiers and the respective input ports of the plurality of power amplifiers. The shared inductive device can be a shared inductor or a shared transformer.
Abstract:
An organic light emitting device is provided that includes: an anode including an anode material and for injecting holes; an organic layer including a light emitting layer on the anode; and a cathode on the organic layer and through which light emitted from the light emitting layer passes, wherein the cathode includes: a buffer layer, a metal oxide layer including a metal oxide, and a metal layer including a metal having an absolute work function value lower than an absolute work function value of the anode material and coupled to the buffer layer and the metal oxide layer.