Abstract:
A method of fabricating a semiconductor device comprising a method of forming an etching mask used for etching a semiconductor base material is disclosed. The method of fabricating a semiconductor device comprises forming hard mask patterns on a semiconductor base material; forming material layers covering the lateral and top surfaces of the hard mask patterns to form openings between adjacent hard mask patterns, wherein the width of each opening is smaller than the distance between adjacent hard mask patterns; and etching the semiconductor base material using the hard mask patterns and material layers as an etching mask.
Abstract:
A semiconductor device including a transistor and a method of forming thereof are provided. The semiconductor device comprises a metal gate electrode. A lower portion of the metal gate electrode fills a channel trench formed at a predetermined region of a substrate, and an upper portion of the metal gate electrode protrudes on the substrate. A gate insulating layer is interposed between inner sidewalls and a bottom surface of the channel trench, and the metal gate electrode. Source/drain regions are formed at the substrate in both sides of the metal gate electrode.
Abstract:
A method of fabricating a MOS transistor, and the MOS transistor fabricated by the method, includes providing a substrate, forming a predetermined layer having a non-planar surface on the substrate, the predetermined layer including at least one active region, forming a gate electrode material layer on the non-planar, predetermined layer, forming a material layer and a hard mask layer on an entire surface of the gate electrode material layer, and planarizing a top surface of the material layer to form a planarized material layer, forming a photoresist pattern on the planarized material layer and the hard mask layer to pattern the gate electrode material layer, forming a hard mask pattern by etching the hard mask layer using the photoresist pattern as an etching mask, and forming a predetermined pattern by etching the planarized material layer and the gate electrode material layer according to a shape of the hard mask pattern.
Abstract:
An etching process including plasma pretreatment for generating a polymer layer formed of carbon on a photoresist pattern. The photoresist pattern is treated with plasma that does not contain fluorine radicals and that provides carbon radicals. An etching process is performed on an etching target layer by using the photoresist pattern as an etch mask.
Abstract:
Methods for fabricating semiconductor devices having capacitors are provided. A plurality of storage node electrodes are formed on a semiconductor substrate. Then, a capacitor dielectric layer is formed over the storage node electrodes. A plate electrode layer is subsequently formed on the capacitor dielectric layer. A hard mask layer is then formed on the resultant structure where the plate electrode layer is formed so as to fill a gap between the adjacent storage node electrodes. The hard mask layer and the plate electrode layer are successively patterned to form a plate electrode.
Abstract:
A capacitor for a semiconductor memory device is fabricated by forming a mold layer on a semiconductor substrate that includes a peripheral circuit area and a cell array area which includes a plug in a buried contact hole. A hard mask layer pattern is formed on the mold layer. The mold layer is etched, using the hard mask layer pattern as an etch mask, to form a mold layer pattern. The hard mask layer pattern is then removed from the mold layer pattern or only partially etched back on the mold layer pattern. A capacitor lower electrode is formed along the walls of the buried contact hole and on a surface of the mold layer pattern. A capacitor dielectric layer is formed on the capacitor lower electrode and a capacitor upper electrode is formed on the capacitor dielectric layer.