Abstract:
A communication device (1, 15, 25, 35) comprising a housing (2) with a housing wall (50) bounding a space (7). The housing (2) comprises a first housing part (3) and a second housing part (4), which are joined along a dividing line (40), whereby a first abutment face (41) of the first housing part (3) abuts a second abutment face (42) of the second housing part (4) along the dividing line (40). A first microphone transducer (8) is arranged in the housing (2). The first microphone transducer (8) comprises a microphone opening (9), which is connected to the space (7). The space (7) is communicating with the surroundings via a peripheral line (47) of housing openings (39) in the outer side (44) of the housing wall (50) arranged along the dividing line (40), and housing channels (46) extending between the housing openings (39) and the inner side (43) of the housing wall (50). The housing channels (46) and the housing openings (39) are provided as recessions (45; 48) in the first abutment face (41). The invention also relates to the manufacturing such a communication device.
Abstract:
A wireless audio rendering device, such as headset (2) or speaker phone (3), which audio rendering device (2, 3) is adapted to be paired with a wireless audio gateway device, such as a smart phone (1), whereby a first radio link (4) for transmitting audio can be established between the audio gateway (1) and the first audio rendering device (2). The first audio rendering device (2) is adapted to wirelessly recognise a second audio rendering device (3) also paired with the audio gateway device (1). When brought within an activation distance (D1-D3) of the second audio rendering device (3) the first audio rendering device (2) is adapted to initiate an audio transfer step, in which the first audio link (4) is replaced by a second radio link (5) for transmitting audio between the audio gateway (1) and the second audio rendering device (3). The invention also relates to a method of audio transferring and an audio rendering device for use with the method.
Abstract:
A wireless headset system comprising a first telecommunication device, a second telecommunication device, such as a mobile phone or a smart phone and a wireless headset adapted to be wirelessly connected by a first radio link to the first telecommunication device. The headset system is adapted to transfer a call from the first telecommunication device to the second telecommunication device, when the first wireless link or a second radio link between the first telecommunication device and the second telecommunication device is broken or becomes sufficiently weak. The invention also relates to a method and a headset to be used with such a system.
Abstract:
Disclosed is a method for optimizing noise cancellation in a headset, the headset comprising a headphone and a microphone unit comprising at least a first microphone and a second microphone, the method comprising: generating at least a first audio signal from the at least first microphone, where the first audio signal comprises a speech portion from a user of the headset and a noise portion from the surroundings; generating at least a second audio signal from the at least second microphone, where the second audio signal comprises a speech portion from the user of the headset and a noise portion from the surroundings; generating a noise cancelled output by filtering and summing at least a part of the first audio signal and at least a part of the second audio signal, where the filtering is adaptively configured to continually minimize the power of the noise cancelled output, and where the filtering is adaptively configured to continually provide that at least the amplitude spectrum of the speech portion of the noise cancelled output corresponds to the speech portion of a reference audio signal generated from at least one of the microphones.
Abstract:
Disclosed is a method for optimizing noise cancellation in a headset, the headset comprising a headphone and a microphone unit comprising at least a first microphone and a second microphone, the method comprising: generating at least a first audio signal from the at least first microphone, where the first audio signal comprises a speech portion from a user of the headset and a noise portion from the surroundings; generating at least a second audio signal from the at least second microphone, where the second audio signal comprises a speech portion from the user of the headset and a noise portion from the surroundings; generating a noise cancelled output by filtering and summing at least a part of the first audio signal and at least a part of the second audio signal, where the filtering is adaptively configured to continually minimize the power of the noise cancelled output, andwhere the filtering is adaptively configured to continually provide that at least the amplitude spectrum of the speech portion of the noise cancelled output corresponds to the speech portion of a reference audio signal generated from at least one of the microphones.
Abstract:
An earphone device (1) to be worn in the ear, which earphone device (1) comprising a main body (18) to be arranged in the concha (19) of the outer ear (14) of a user and an optical sensor (35), which optical sensor (35) comprises a light emitter (16) and a light detector (17). The earphone device (1) comprises window means (8, 9) through which light emitted by the light emitter (16) can be transmitted. The window means (8, 9) comprises an end face (31) adapted to abut a conchal wall (37) at a sensing position (36). The main body (18) comprises a speaker protrusion (26) to be inserted into to ear canal (15). The distance between the speaker protrusion (26) and the end face (31) is adjustable.