Abstract:
A microlens includes a first light conductor having at least one concave recess, and a second light conductor in the recess. The curvature of the recess and the refractive indices of the light conductors cause incident light from the area of the microlens to be transmitted to a photosensor with a smaller area. In an array of microlenses, recesses may be separated to prevent crosstalk.
Abstract:
Rebinning methods and arrangements are provided that significantly improve the 3D wavelet compression performance of the image based rendering data, such as, e.g., concentric mosaic image data. Through what is essentially a selective cutting and pasting process the image data is divided into stripes that are then used to form a set of multi-perspective panoramas. The rebinning process greatly improves the performance of the cross shot filtering, and thus improves the transform and coding efficiency of 3D wavelet codecs. While the region of support after rebinning may cease to be rectangular in some cases, a padding scheme and an arbitrary shape wavelet coder can be implemented to encode the result data volume of the smart rebinning. With an arbitrary shape wavelet codec, the rebinning outperforms MPEG-2 by 3.7 dB, outperforms direct 3D wavelet coder by 4.3 dB, and outperforms a reference block coder (RBC) by 3.2 dB on certain tested concentric mosaic image scenes. Hence, the rebinning process nearly quadruples the compression ratio for selected scenes. Additional methods and arrangements are provided that include selectively dividing the image data into slits and rebinning the slits into a huge 2D array, which is then compressed using conventional still image codecs, such as, JPEG.
Abstract:
Microelectronic imagers with shaped image sensors and methods for manufacturing curved image sensors. In one embodiment, a microelectronic imager device comprises an imaging die having a substrate, a curved microelectronic image sensor having a face with a convex and/or concave portion at one side of the substrate, and integrated circuitry in the substrate operatively coupled to the image sensor. The imaging die can further include external contacts electrically coupled to the integrated circuitry and a cover over the curved image sensor.
Abstract:
A semi-conductor based imager includes a microlens array having microlenses with modified focal characteristics. The microlenses are made of a microlens material, the melting properties of which are selectively modified to obtain different shapes after a reflow process. Selected microlenses, or portions of each microlens, are modified, by exposure to ultraviolet light, for example, to control the microlens shape produced by reflow melting. Controlling the microlens shape allows for modification of the focal characteristics of selected microlenses in the microlens array.
Abstract:
A micro-lens and a method for forming the micro-lens is provided. A micro-lens includes a substrate and lens material located within the substrate, the substrate having a recessed area serving as a mold for the lens material. The recessed can be shaped such that the lens material corrects for optical aberrations. The micro-lens can be part of a micro-lens array. The recessed area can serve as a mold for lens material for the micro-lens array and can be shaped such that the micro-lens array includes arcuate, non-spherical, or non-symmetrical micro-lenses.
Abstract:
A “PeerStreamer” provides receiver-driven peer-to-peer (P2P) media streaming for loosely coupled P2P networks. Peers in the network perform only simple operations, may cache all or part of the streaming media, do not collaborate with other peers, may be unreliable, and may drop offline or come online during any given streaming session. Clients in the network operate in real-time to coordinate peers, stream media from multiple peers, perform load balancing, handle online/offline states of peers, and perform decoding and rendering the streaming media. In one embodiment, the PeerStreamer uses high rate erasure resilient coding to allow multiple serving peers to hold partial media without conflict, such that clients simply retrieve fixed numbers of erasure coded blocks regardless of where and what specific blocks are retrieved. In another embodiment, the PeerStreamer uses embedded coded media to vary streaming bitrates according to available serving bandwidths and client queue status.
Abstract:
The subject invention is directed to use of photoconductors as conductors of light to photo diodes in a CMOS chip, wherein said photoconductors are separated by at least one low refractive index material (i.e. air). The present invention offers advantages over previous CMOS imaging technology, including enhanced light transmission to photo diodes. The instant methods for producing a CMOS imaging device and CMOS imager system involve minimal power loss. Since no lens is required, the invention eliminates concerns about radius limitation and about damaging lenses during die attach, backgrind, and mount. The invention also provides little or no cross talk between photo diodes.
Abstract:
A GUI utility tool running on a web application development environment is presented that acts to eliminate inconsistency between a given HTML user input form description file and a corresponding servlet program file. The tool allows the user to specify an HTML file. The tool may then parse the HTML file to discover input parameters and generate Java servlet program code to receive the input parameters.
Abstract:
A variety of structures and methods used to adjust the shape, radius and/or height of a microlens for a pixel array. The structures affect volume and surface force parameters during microlens formation. Exemplary microlens structures include a microlens frame, base, material, protrusions or a combination thereof to affect the shape, height and/or radius of the microlens. The frame, base and/or protrusions alter the microlens flow resulting from the heating of the microlens during fabrication such that a height or radius of the microlens can be controlled. The radius can be adjusted by the height differences between the microlens and frame. The bigger the difference, the smaller the radius will be.
Abstract:
A signal detector includes a transform unit and a post processing test unit. The transform unit is adapted to a transform unit adapted to receive at least first and second frames of input samples, determine a first plurality of energy values for the first frame based on a first set of transform coefficients, and determine a second plurality of energy values for the second frame based on a second set of transform coefficients. The post processing test unit is adapted to identify at least one target frequency based on the first plurality of energy values. The second set of transform coefficients is based on the target frequency, and the post processing unit is adapted to determine the presence of a first signal in the input samples based on the second plurality of energy values. A method for detecting a signal is provided. A first frame of input samples is received. A first set of transform coefficients is determined based on a first plurality of frequencies. A first plurality of energy values is determined based on the first set of transform coefficients. A target frequency is determined from the first plurality of frequencies based on the first plurality of energy values. A second set of transform coefficients is determined based on the target frequency. A second frame of input samples is received. A second plurality of energy values is determined based on the second set of transform coefficients. The presence of the signal in the input samples is determined based on the second plurality of energy values.