Abstract:
An array substrate includes a substrate including a display area and a peripheral area surrounding the display area, data lines disposed in the display area and including a portion thereof extending from the display area into the peripheral area at a first side of a periphery of the display area, and a repair line disposed in the peripheral area and crossing the portion of the data lines extending into the peripheral area. The array substrate also includes a static electricity diode part electrically connected to the repair line and a first data line of the data lines.
Abstract:
A display apparatus includes a gate driver which sequentially outputs a gate signal at a high state in response to a gate control signal and a data driver which converts image data into a data signal in response to a data control signal. The display apparatus further includes a display panel which includes a plurality of gate lines which sequentially receive the gate signal, a plurality of data lines which receive the data signal and a plurality of pixels connected to the gate and data lines and which receive the data signal in response to the gate signal to display an image. The polarity of the data signal is inverted after the gate signal transitions to a low state.
Abstract:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
Abstract:
A thin film transistor substrate capable of appropriately maintaining driving performance even when there is a difference between manufacturing processes and a method of manufacturing the same. The thin film transistor substrate includes: a gate electrode formed on an insulating substrate; a semiconductor layer formed on the gate electrode; and a plurality of thin film transistors each having a source electrode and a drain electrode that are formed on the gate electrode and the semiconductor layer so as to be spaced apart from each other. At least one of the plurality of thin film transistors is a dummy thin film transistor that does not have the semiconductor layer between the source electrode and the drain electrode.
Abstract:
A system and method for securing a lost terminal using a wireless network are provided. The system includes a lost terminal registration server to store unique terminal information of a lost terminal, and a terminal including a wireless Local Area Network (LAN) module to connect to the lost terminal registration server to determine whether the terminal is registered as a lost terminal in the lost terminal registration server. If the terminal is determined to be a lost terminal, then the lost terminal may be tracked and/or locked to secure the terminal.
Abstract:
A gate driving circuit includes cascaded stages, each including a pull-up part, a carry part, a pull-up driving part, a holding part and an inverter. The pull-up part pulls up a gate voltage to an input clock. The carry part pulls up a carry voltage to the input clock. The pull-up driving part is connected to a control terminal (Q-node) common to the carry part and the pull-up part, and receives a previous carry voltage from a previous stage to turn on the pull-up part and the carry part. The holding part holds the gate voltage at an off-voltage, and the inverter controls at least one of turning on the holding part and turning off the holding part based on an inverter clock. A high level of the inverter clock in a given horizontal period (1H) temporally precedes a high level of the input clock by a predetermined time interval.
Abstract:
Disclosed herein is a novel gluconacetobacter strain having cellulose producing activity. Specifically, the present invention relates to a novel gluconacetobacter strain producing nano-structured cellulose in a highly efficient manner. The cellulose produced by the strain, due to its superb thermodynamic properties, can be characterized as nano-structured bacterial cellulose and therefore utilized as a bio-nano-fiber. Particularly, the cellulose can be impregnated with a resin to form a cellulose-based resin which can be effectively adapted for a substrate for a liquid crystal display (LCD).
Abstract:
A display apparatus includes a display substrate and a counter substrate. The display substrate includes a first substrate and a plurality of pixel electrodes formed on the first substrate. The counter substrate includes a second substrate facing the first substrate, a common electrode formed on the second substrate, a first spacer formed on the common electrode and making contact with the display substrate, a second spacer having a first gap with the display substrate, a third spacer having a second gap larger than the first gap with the display substrate, and a fourth spacer having a third gap larger than the second gap with the display substrate.
Abstract:
Disclosed herein are a method for preparing a transformant which carries a gene encoding benzaldehyde dehydrogenase derived from Sphingomonas aromaticivorans KCTC 2888 and expresses the enzyme, and biological purification of the crude naphthalene dicarboxylic acid, obtained upon the oxidation of 2,6-dimethylnaphthalene with the concomitant production of 2-formyl-6-naphthoic acid, by applying a transformant for the conversion of FNA into naphthalene dicarboxylic acid.
Abstract:
An array substrate includes a substrate including a display area and a peripheral area surrounding the display area, data lines disposed in the display area and including a portion thereof extending from the display area into the peripheral area at a first side of a periphery of the display area, and a repair line disposed in the peripheral area and crossing the portion of the data lines extending into the peripheral area. The array substrate also includes a static electricity diode part electrically connected to the repair line and a first data line of the data lines.