Abstract:
A method for mixing a drilling fluid formulation that includes establishing a flow path for a base fluid, adding drilling fluid additives to the base fluid to create a mixture, aerating the mixture of base fluid and drilling fluid additives, and injecting a compressible driving fluid into the mixture of base fluid and drilling fluid additives to form a mixed drilling fluid is disclosed.
Abstract:
A method for using a drilling fluid test device including a test cell including a perforated plate disposed proximate a first end of the test cell, a piston disposed within the cell, a first chamber formed between the perforated plate and the piston, the first chamber configured to receive lost circulation material (LCM), a second chamber formed between the piston and a second end of the test cell, the piston providing a seal between the first and second chambers, a fluid inlet disposed proximate the second end of the test cell configured to introduce fluid into a second chamber of the test cell, a filtrate outlet disposed proximate the first end of the test cell to discharge filtrate, and a pump in communication with the fluid inlet.
Abstract:
The various embodiments relate to a system and method for regenerating a direct oxidation catalyst that coverts H2S to elemental S. One embodiment of the method comprises regenerating a direct oxidation catalyst by contacting the direct oxidation catalyst with steam.
Abstract:
A kinetic gas hydrate inhibitor is provided as a polyester polymer with a plurality of amino or ammonium groups pendent directly from the backbone. A composition containing concentrated kinetic inhibitor is injected into gas wells, or into other systems involving transporting liquid gas mixtures through a conduit. Use of the kinetic inhibitor prevents formation of gas hydrates under conditions of temperature and pressure where they would otherwise occur.
Abstract:
A method for completing a wellbore may include introducing a wellbore fluid into a wellbore, the wellbore fluid having a base fluid; and a solid weighting agent having a d90 of less than 20 microns; where the method may also include contacting the wellbore fluid with a swellable element in the wellbore; and allowing swelling of the swellable element.
Abstract:
A method of cleaning a wellbore prior to the production of oil or gas, wherein the wellbore has been drilled with an invert emulsion drilling mud that forms an invert emulsion filter cake is disclosed. The method may include circulating a breaker fluid into the wellbore, where the breaker fluid includes a non-oleaginous internal phase and an oleaginous external phase, where the non-oleaginous phase includes a water soluble polar organic solvent, a hydrolysable ester of a carboxylic acid, and a weighting agent, and the oleaginous external phase includes an oleaginous fluid and an emulsifier, and where the hydrolysable ester is selected so that upon hydrolysis an organic acid is released and the invert emulsion of the filter cake breaks.
Abstract:
Methods and apparatus for separating solid particles from a fluid. One preferred embodiment includes a tank for settling particles out of the fluid, a conical chamber at the bottom of the tank, an outlet connected to conical chamber, and a conical auger within the conical chamber. The tank may have a tangential inlet that creates a fluid circulation that exerts a centrifugal force on the solid particles to increase the settling of particles out of the fluid. The tank may have a static spiral on the inner wall that helps small particles coalesce into larger particles that settle faster out of the fluid. The fluid content of the solids removed from the tank may be controlled by varying the rotational speed of the conical auger. The rotational speed of the conical auger may be varied depending on the torque required to rotate the conical auger.
Abstract:
A wellbore fluid includes an aqueous fluid, a viscosifer, a stabilizer agent, and a lubricant. The aqueous fluid is an inhibitive divalent fluid. A method of preparing the divalent wellbore fluid includes
are provided or formulated, methods produce the divalent wellbore fluids, and methods inject or circulate the inhibitive divalent wellbore fluids into a wellbore or borehole provided in a formation and/or into a reservoir of the formation.
Abstract:
A method of recycling a direct emulsion wellbore fluid may include disrupting a direct emulsion comprising an aqueous external phase and an oleaginous internal phase, wherein the direct emulsion is stabilized by a surfactant composition; and separating the aqueous phase and the oleaginous phase.
Abstract:
An apparatus includes a materials separator that includes a continuous filter belt disposed around a plurality of rollers. The apparatus also includes a pressure differential system operatively coupled to the separator and configured to adjust a pressure differential across the continuous filter belt. A vacuum is applied to the continuous filter belt and a fluid portion of the slurry on the continuous filter belt is drawn through the continuous filter belt. An apparatus includes a materials separator having a first deck with a first continuous filter belt and a second deck with a second continuous filter belt.