Abstract:
A lead anchor includes a body defining a lead lumen having a first opening and a second opening through which a lead can pass. The body further defines a transverse lumen that intersects the lead lumen. An exterior member is disposed around at least a portion of the body. The exterior member is formed of a biocompatible material. A fastener anchors the lead to the body through the transverse lumen by deforming a portion of the lead. The transverse lumen is configured and arranged to receive the fastener. At least at least two suture tabs extend from the exterior member and are configured and arranged for receiving a suture to suture the lead anchor to patient tissue.
Abstract:
Disclosed is a lead anchor comprising a body made of an elastomeric material and defining a first opening and a second opening through which a lead can pass, one or more fasteners disposed within the body, with the ends of the fasteners protruding from the body, wherein the ends are configured and arranged to be clamped down to secure a lead passing through the body.
Abstract:
A lead includes an elongated lead body of non-conductive material and a plurality of conductive wires. Each wire has a first portion disposed within the lead body and a second portion extending out of the lead body. The second portion is coiled around the lead body to form a contact on the outer surface of the lead.
Abstract:
A lead includes an outer tube body, an inner tube body, conductors, and electrodes. A portion of the inner tube body may be disposed in the outer tube body lumen. The conductors are optionally partially disposed within the inner tube body lumen, wherein a distal end of each conductor extends beyond a distal end of the inner tube body. Each electrode is optionally coupled to a conductor. The outer tube body may be slideable over the inner tube body between a first position in which the conductors and electrodes are disposed in the outer tube body lumen and a second position in which the outer tube body is partially retracted to expose the conductors and electrodes. The lead is optionally configured and arranged such that at least a portion of the inner tube body remains disposed in the outer tube body lumen after completion of implantation of the lead.
Abstract:
A kit includes a coupling member and an insertion needle. The coupling member defines at least one lumen extending through the coupling member that is configured and arranged to receive a portion of one or more lead bodies. The insertion needle includes a tubular member that defines a lumen that is optionally configured and arranged to receive a portion of two or more lead bodies that are coupled by a coupling member. A method of implanting a lead comprises coupling together a portion of two or more leads using a coupling member, disposing at least a portion of the two or more leads coupled by the coupling member into a tubular member of an insertion needle, inserting at least the distal end of the tubular member into a tissue of a patient, and advancing the two or more leads coupled by the coupling member distally through the tubular member and into the tissue.
Abstract:
A burr hole plug comprises a plug base configured for being mounted around a burr hole. The plug base includes an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base. The retainer further includes first and second slidable clamping mechanisms configured for securing the medical devices therebetween within the aperture of the plug base. A method comprises introducing the medical device through the burr hole, mounting a plug base around the burr hole, such that the medical device extends through the plug base aperture, mounting the retainer within the aperture of the plug base, and sliding the first and second clamping mechanisms secure the medical device therebetween.
Abstract:
A method of building a data integration environment is provided. According to one embodiment of the invention as applied to a computer network, the method comprising: identifying the data integration environment and the policies that apply to it, negotiating with the environment, and generating a new interface rule set enabling information to be passed in dependence thereon between the system which is made part of the integration environment and the integration environment. The method can be usefully applied in UAV networks, robot networks as well as in networks of fixed sensors. The invention finds utility in various important applications such as in network-enabled capability and in rapid integration of systems.
Abstract:
An insertion kit includes a lead and a splitable member configured and arranged for receiving the lead when implanting the lead into a patient. The lead has a distal end and at least two proximal ends. The lead includes a plurality of electrodes disposed at the distal end, a plurality of terminals disposed at the proximal ends, and a plurality of conductive wires coupling the plurality of electrodes electrically to the plurality of terminals. The lead also includes a junction coupling the distal end of the lead to the proximal ends of the lead. The splitable member defines a lumen for receiving the distal end of the lead and is configured and arranged to divide into at least two parts for removal of the splitable member from the lead upon implantation of the lead into the patient.
Abstract:
An exemplary steerable stylet handle assembly includes a housing having first and second side walls defining a channel therebetween, a button in communication with the first and second side walls and configured to move distally and proximally within the channel, and a stylet subassembly having an inner stylet wire located at least partially within an outer tubing. The inner stylet wire has a pre-curved portion and is coupled to a proximal portion of the housing. The outer tubing is coupled to the button. Movement of the button within the channel is configured to selectively expose and cover at least a portion of the pre-curved distal portion of the inner stylet wire with the outer tubing.
Abstract:
A burr hole plug comprises a plug base including a flange configured for being mounted around a burr hole, an aperture through which an elongated medical device may pass, and tabs configured for extending within the cranial burr hole to center the plug base relative to the cranial burr hole. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base to secure the medical device. A method may comprise locating the plug base within a burr hole, such that the tabs are disposed within the burr hole to center the plug base relative to the cranial burr hole, introducing the elongated medical device through the cranial burr hole and into the brain tissue of the patient, mounting the retainer within the aperture of the plug base, and actuating the retainer to secure the medical device.