Abstract:
A method of forming silicide is described. A layer of refractory metal is deposited on a substrate, and then a first annealing process is performed to form silicide, followed by removal of unreacted metal. Next, a species implanting process is carried out to implant species of neutral atoms into the silicide to break up lattice structure of the silicide, so that the problem of junction leakage induced by spiking and piping diffusion under high temperature during a subsequent second annealing process is avoided.
Abstract:
A microprocessor-based circuit breaker includes a chip that defines the current rating or ground fault current for the breaker. Thus, the maximum current rating and/or ground fault current can be set after manufacture using the chip that is electrically connected to the microprocessor. The breaker includes mechanical components that trip to disconnect the load terminal from the line input. The mechanical components include a floating breaker arm, trigger and tripper lever that cooperate to control the tripping of the breaker. A spring between the breaker arm and trigger, together with cam surfaces defined in the breaker switch cooperate to form a floating linkage to control the position of the breaker arm during on/off activation and current fault conditions. The circuit breaker also includes multiple indicia to provide a visual indication of the type of fault condition sensed by the breaker.
Abstract:
A method of fabricating a MOS transistor having SEG Si. After the formation of a gate and a spacer and before a source/drain region is formed, a selective epitaxial growth (SEG) Si is deposited over the substrate. The spacer is then removed to form an ultra shallow junction in the exposed substrate covered by the spacer after the formation of the SEG Si.
Abstract:
The present invention provides a method of forming a PMOS transistor or an NMOS transistor on a semiconductor wafer. The semiconductor wafer comprises a silicon substrate and a gate positioned on a predetermined area of the silicon substrate. First, a protection layer of uniform thickness made of silicon nitride is formed on the semiconductor wafer to cover the surface of the gate. Then, a first ion implantation process is performed to form a first ion implantation layer with a first predetermined thickness on the silicon substrate around the gate. Then, an RCA cleaning process is performed to remove impurities on the semiconductor wafer. Next, a spacer is formed around the gate. Finally, a second ion implantation process is performed to form a second ion implantation layer with a second predetermined thickness on the silicon substrate around the gate. The second ion implantation layer is used as a source or drain (S/D) of the MOS transistor. The portion of the first ion implantation layer that is not covered by the second ion implantation layer is used as a lightly doped drain (LDD). The protection layer is used to protect the surface of the silicon substrate from being etched during the RCA cleaning process so as to prevent an increase of the electrical resistance of the LDD.
Abstract:
A method for forming a semiconductor structure by using super halo implant combined with offset spacer process is disclosed. This invention comprises providing a substrate with a gate electrode formed thereon and a halo implant region formed therein. Then, a dielectric layer is deposited on the substrate and the gate electrode. Next, the semiconductor structure is annealed, and the dielectric layer is anisotropically etched to form an offset spacer.
Abstract:
A method of suppressing junction capacitance of the source/drain regions is disclosed in this invention. The source/drain regions are formed by double implantation of phosphorus ions and arsenic ions. The phosphorus ion implantation lowers the energy needed in the implantation of arsenic ions, and reduces dislocations in the source/drain regions formed during implanting arsenic ions. Further, the double implantation suppresses the junction profile of arsenic ions, and enhances the width of depletion regions. So, the junction capacitance is reduced, thereby accelerate the function of semiconductor devices.
Abstract:
A method for manufacturing a PMOS transistor. A gate terminal is formed over a substrate. Spacers are formed on the sidewalls of the gate terminal. A source/drain terminal is formed in the substrate on each side of the gate terminal, and then a metal silicide layer is formed over the top surface of the gate terminal and the substrate. The spacers are next removed. Using the metal silicide layer as a mask, a source/drain extension region is formed in the substrate between the gate terminal and the source/drain terminal. Similarly, using the metal silicide layer as a mask, an anti-punchthrough region is form in the substrate interior under the source/drain extension region.